MediaWiki API sonucu
Bu, JSON biçiminin HTML temsilidir. HTML hata ayıklama için iyidir, ancak uygulama kullanımı için uygun değildir.
Çıkış biçimini değiştirmek için format parametresini belirtin. JSON biçiminin HTML olmayan temsilini görmek için format=json ayarını yapın.
Daha fazla bilgi için tam belgelendirme veya API yardımına bakın.
{
"compare": {
"fromid": 1,
"fromrevid": 1,
"fromns": 0,
"fromtitle": "Matematik",
"toid": 2,
"torevid": 2,
"tons": 0,
"totitle": "Say\u0131",
"*": "<tr><td colspan=\"2\" class=\"diff-lineno\" id=\"mw-diff-left-l1\">1. sat\u0131r:</td>\n<td colspan=\"2\" class=\"diff-lineno\">1. sat\u0131r:</td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{Bilim}}</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''Say\u0131''', [[sayma]], [[\u00f6l\u00e7me]] ve etiketleme i\u00e7in kullan\u0131lan bir </ins>[[<ins class=\"diffchange diffchange-inline\">matematiksel nesne]]dir</ins>. <ins class=\"diffchange diffchange-inline\">En temel \u00f6rnek, </ins>[[<ins class=\"diffchange diffchange-inline\">do\u011fal say\u0131</ins>]]<ins class=\"diffchange diffchange-inline\">lard\u0131r ([[1 (say\u0131)|1</ins>]]<ins class=\"diffchange diffchange-inline\">, </ins>[[<ins class=\"diffchange diffchange-inline\">2 (say\u0131)</ins>|<ins class=\"diffchange diffchange-inline\">2]], [[3 (say\u0131)</ins>|<ins class=\"diffchange diffchange-inline\">3]], </ins>[[<ins class=\"diffchange diffchange-inline\">4 (say\u0131)|4</ins>]] <ins class=\"diffchange diffchange-inline\">ve devam\u0131).{{r|OUP_number}} Say\u0131lar, [[say\u0131 ad\u0131</ins>]] <ins class=\"diffchange diffchange-inline\">(</ins>''<ins class=\"diffchange diffchange-inline\">numeral'') ile dilde temsil edilebilir. Daha evrensel olarak, tekil say\u0131lar </ins>''<ins class=\"diffchange diffchange-inline\">rakam</ins>'' <ins class=\"diffchange diffchange-inline\">ad\u0131 verilen </ins>[[<ins class=\"diffchange diffchange-inline\">sembol</ins>]]<ins class=\"diffchange diffchange-inline\">lerle temsil edilebilir; \u00f6rne\u011fin</ins>, \"<ins class=\"diffchange diffchange-inline\">5\" be\u015f say\u0131s\u0131n\u0131 temsil eden bir rakamd\u0131r. Yaln\u0131zca nispeten az say\u0131da sembol\u00fcn ezberlenebilmesi nedeniyle</ins>, <ins class=\"diffchange diffchange-inline\">temel rakamlar genellikle bir [[rakam sistemi]]nde organize edilir</ins>, <ins class=\"diffchange diffchange-inline\">bu da herhangi bir say\u0131y\u0131 temsil etmenin organize bir yoludur. En yayg\u0131n rakam sistemi </ins>[[<ins class=\"diffchange diffchange-inline\">Hint-Arap rakam sistemi</ins>]]<ins class=\"diffchange diffchange-inline\">dir, bu sistem on temel say\u0131sal sembol</ins>, <ins class=\"diffchange diffchange-inline\">yani rakam kullan\u0131larak herhangi bir negatif olmayan tam say\u0131n\u0131n temsil edilmesine olanak tan\u0131r.{{r|OUP_2017}}{{efn|</ins>[[<ins class=\"diffchange diffchange-inline\">Dilbilim</ins>]]<ins class=\"diffchange diffchange-inline\">de</ins>, [[<ins class=\"diffchange diffchange-inline\">numeral </ins>(<ins class=\"diffchange diffchange-inline\">linguistics</ins>)|<ins class=\"diffchange diffchange-inline\">rakam</ins>]] <ins class=\"diffchange diffchange-inline\">5 gibi bir sembol\u00fc ifade edebilece\u011fi gibi \"be\u015f y\u00fcz\" gibi bir say\u0131y\u0131 adland\u0131ran bir kelime veya ifadeyi de ifade edebilir; rakamlar ayr\u0131ca \"d\u00fczine\" </ins>gibi <ins class=\"diffchange diffchange-inline\">say\u0131lar\u0131 temsil eden di\u011fer kelimeleri de i\u00e7erir</ins>.<ins class=\"diffchange diffchange-inline\">}} Say\u0131lar sayma </ins>ve <ins class=\"diffchange diffchange-inline\">\u00f6l\u00e7me d\u0131\u015f\u0131nda, etiketlerde (telefon numaralar\u0131 gibi), s\u0131ralamada (seri numaralar\u0131 gibi) </ins>ve <ins class=\"diffchange diffchange-inline\">kodlarda (</ins>[[<ins class=\"diffchange diffchange-inline\">Uluslararas\u0131 Standart Kitap Numaras\u0131</ins>|<ins class=\"diffchange diffchange-inline\">ISBN</ins>]]<ins class=\"diffchange diffchange-inline\">'ler gibi) kullan\u0131lmak i\u00e7in de s\u0131kl\u0131kla kullan\u0131l\u0131r. Yayg\u0131n kullan\u0131mda, bir ''rakam'' ile temsil etti\u011fi ''say\u0131'' net bir \u015fekilde ayr\u0131lmaz</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{Matematik konular\u0131 kenar \u00e7ubu\u011fu}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>[[<del class=\"diffchange diffchange-inline\">Dosya:Sudoku-by-L2G-20050714</del>.<del class=\"diffchange diffchange-inline\">svg|k\u00fc\u00e7\u00fckresim|sa\u011f|</del>[[<del class=\"diffchange diffchange-inline\">Sudoku</del>]] <del class=\"diffchange diffchange-inline\">matematik oyunu</del>]]</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>[[<del class=\"diffchange diffchange-inline\">Dosya:Casio calculator JS-20WK in 201901 002.jpg</del>|<del class=\"diffchange diffchange-inline\">k\u00fc\u00e7\u00fckresim</del>|[[<del class=\"diffchange diffchange-inline\">Hesap Makinesi</del>]]]]</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>'''<del class=\"diffchange diffchange-inline\">Matematik</del>''' <del class=\"diffchange diffchange-inline\">(</del>[[<del class=\"diffchange diffchange-inline\">Yunanca</del>]] <del class=\"diffchange diffchange-inline\">\u03bc\u03ac\u03b8\u03b7\u03bc\u03b1 ''m\u00e1th\u0113ma</del>,<del class=\"diffchange diffchange-inline\">'' </del>\"<del class=\"diffchange diffchange-inline\">bilgi</del>, <del class=\"diffchange diffchange-inline\">\u00e7al\u0131\u015fma</del>, <del class=\"diffchange diffchange-inline\">\u00f6\u011frenme\"); </del>[[<del class=\"diffchange diffchange-inline\">say\u0131</del>]]<del class=\"diffchange diffchange-inline\">lar</del>, [[<del class=\"diffchange diffchange-inline\">felsefe</del>]], [[<del class=\"diffchange diffchange-inline\">uzay </del>(<del class=\"diffchange diffchange-inline\">matematik</del>)|<del class=\"diffchange diffchange-inline\">uzay]] ve [[fizik</del>]] gibi <del class=\"diffchange diffchange-inline\">konularla ilgilenir</del>. <del class=\"diffchange diffchange-inline\">Matematik\u00e7iler </del>ve <del class=\"diffchange diffchange-inline\">filozoflar aras\u0131nda matemati\u011fin kesin kapsam\u0131 </del>ve [[<del class=\"diffchange diffchange-inline\">Matematik felsefesi</del>|<del class=\"diffchange diffchange-inline\">tan\u0131m\u0131</del>]] <del class=\"diffchange diffchange-inline\">konusunda g\u00f6r\u00fc\u015f ayr\u0131l\u0131\u011f\u0131 vard\u0131r</del>.</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>[[<del class=\"diffchange diffchange-inline\">Matematik\u00e7iler</del>]] [[<del class=\"diffchange diffchange-inline\">\u00f6r\u00fcnt\u00fc</del>]]<del class=\"diffchange diffchange-inline\">leri ara\u015ft\u0131r\u0131r </del>ve <del class=\"diffchange diffchange-inline\">bunlar\u0131 yeni </del>[[<del class=\"diffchange diffchange-inline\">konjekt\u00fcr</del>]]<del class=\"diffchange diffchange-inline\">ler form\u00fcle etmekte kullan\u0131rlar. Bu konjekt\u00fcrlerin do\u011frulu\u011funu veya yanl\u0131\u015fl\u0131\u011f\u0131n\u0131 </del>[[<del class=\"diffchange diffchange-inline\">matematiksel ispat</del>]] <del class=\"diffchange diffchange-inline\">yoluyla \u00e7\u00f6zmeye \u00e7al\u0131\u015f\u0131rlar. Matematiksel yap\u0131lar </del>ger\u00e7ek [[<del class=\"diffchange diffchange-inline\">fenomen</del>]]<del class=\"diffchange diffchange-inline\">leri iyi modelize ettiklerinde matematiksel d\u00fc\u015f\u00fcnce do\u011fa hakk\u0131nda tahmin y\u00fcr\u00fctmemizi </del>ve <del class=\"diffchange diffchange-inline\">onun i\u00e7 y\u00fcz\u00fcn\u00fc anlamam\u0131z\u0131 sa\u011flayabilir</del>. <del class=\"diffchange diffchange-inline\">Matematik </del>[[<del class=\"diffchange diffchange-inline\">Soyutlama (matematik)</del>|<del class=\"diffchange diffchange-inline\">soyutlama</del>]] <del class=\"diffchange diffchange-inline\">ve </del>[[<del class=\"diffchange diffchange-inline\">Mant\u0131k</del>|<del class=\"diffchange diffchange-inline\">mant\u0131\u011f\u0131</del>]] <del class=\"diffchange diffchange-inline\">kullanarak ve sistemli \u00e7al\u0131\u015fmayla fiziksel objelerin </del>[[<del class=\"diffchange diffchange-inline\">\u015fekil</del>]]<del class=\"diffchange diffchange-inline\">lerini ve </del>[[<del class=\"diffchange diffchange-inline\">Hareket (fizik)|hareketlerini</del>]] <del class=\"diffchange diffchange-inline\">saymay\u0131</del>, <del class=\"diffchange diffchange-inline\">hesaplamay\u0131 </del>ve [[<del class=\"diffchange diffchange-inline\">\u00f6l\u00e7me</del>]]<del class=\"diffchange diffchange-inline\">yi m\u00fcmk\u00fcn k\u0131lar ve b\u00f6ylece geli\u015fir. Pratik matematik yaz\u0131l\u0131 kay\u0131tlardan beri insan etkinli\u011fi olagelmi\u015ftir</del>. [[<del class=\"diffchange diffchange-inline\">Matematiksel problem</del>]]<del class=\"diffchange diffchange-inline\">lerinin \u00e7\u00f6z\u00fcm\u00fc i\u00e7in gerekli ara\u015ft\u0131rma y\u0131llarca hatta y\u00fczy\u0131llarca s\u00fcren bir \u00e7aba gerektirebilmektedir</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>[[<ins class=\"diffchange diffchange-inline\">Matematik]]te, say\u0131 kavram\u0131 y\u00fczy\u0131llar boyunca peyderpey geni\u015fletilmi\u015ftir: [[0|s\u0131f\u0131r]] (0),{{r|Matson_2017}} [[negatif say\u0131</ins>]]<ins class=\"diffchange diffchange-inline\">lar,{{r|Hodgkin_2005}} <math>\\left(\\tfrac{1}{2}\\right)</math> gibi </ins>[[<ins class=\"diffchange diffchange-inline\">rasyonel say\u0131</ins>]]<ins class=\"diffchange diffchange-inline\">lar, [[karek\u00f6k 2]] <math>\\left(\\sqrt{2}\\right)</math> </ins>ve [[<ins class=\"diffchange diffchange-inline\">Pi say\u0131s\u0131|{{pi}}</ins>]] <ins class=\"diffchange diffchange-inline\">gibi </ins>[[<ins class=\"diffchange diffchange-inline\">ger\u00e7ek say\u0131</ins>]]<ins class=\"diffchange diffchange-inline\">lar,<ref>{{kitap kayna\u011f\u0131 |ba\u015fl\u0131k=Mathematics across cultures : the history of non-western mathematics |tarih=2000 |yay\u0131nc\u0131=Kluwer Academic |yer=Dordrecht |isbn=1-4020-0260-2 |sayfalar=410-411}}</ref> ve </ins>ger\u00e7ek <ins class=\"diffchange diffchange-inline\">say\u0131lar\u0131 </ins>[[<ins class=\"diffchange diffchange-inline\">i say\u0131s\u0131|{{math|\u22121}}'in karek\u00f6k\u00fc</ins>]] <ins class=\"diffchange diffchange-inline\">ile geni\u015fleten [[karma\u015f\u0131k say\u0131]]lar<ref>{{Kitap kayna\u011f\u0131 |son=Descartes |ilk=Ren\u00e9 |ba\u015fl\u0131k=La G\u00e9om\u00e9trie: Ren\u00e9 Descartes'\u0131n Geometrisi </ins>ve <ins class=\"diffchange diffchange-inline\">\u0130lk Bask\u0131n\u0131n Faksimilesi |url=https://archive</ins>.<ins class=\"diffchange diffchange-inline\">org/details/geometryofrenede00rend |y\u0131l=1954 |yay\u0131nc\u0131=</ins>[[<ins class=\"diffchange diffchange-inline\">Dover Publications]] |isbn=0-486-60068-8 |eri\u015fim-tarihi=20 Nisan 2011 }}</ref> buna dahil edilmi\u015ftir.{{r</ins>|<ins class=\"diffchange diffchange-inline\">Hodgkin_2005}} Say\u0131larla yap\u0131lan [[hesaplama</ins>]]<ins class=\"diffchange diffchange-inline\">lar </ins>[[<ins class=\"diffchange diffchange-inline\">aritmetik</ins>|<ins class=\"diffchange diffchange-inline\">aritmetik i\u015flemler]] ile yap\u0131l\u0131r; en bilindik i\u015flemler [[toplama</ins>]]<ins class=\"diffchange diffchange-inline\">, </ins>[[<ins class=\"diffchange diffchange-inline\">\u00e7\u0131karma</ins>]]<ins class=\"diffchange diffchange-inline\">, </ins>[[<ins class=\"diffchange diffchange-inline\">\u00e7arpma</ins>]], <ins class=\"diffchange diffchange-inline\">[[b\u00f6lme]] </ins>ve [[<ins class=\"diffchange diffchange-inline\">\u00fcs alma</ins>]]<ins class=\"diffchange diffchange-inline\">d\u0131r</ins>. <ins class=\"diffchange diffchange-inline\">Bunlar\u0131n \u00e7al\u0131\u015f\u0131lmas\u0131 veya kullan\u0131lmas\u0131 [[aritmetik]] olarak adland\u0131r\u0131l\u0131r, bu terim ayr\u0131ca say\u0131lar\u0131n \u00f6zelliklerinin incelendi\u011fi </ins>[[<ins class=\"diffchange diffchange-inline\">say\u0131lar teorisi</ins>]]<ins class=\"diffchange diffchange-inline\">ni de ifade edebilir</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">\u0130lk titiz kay\u0131tlara </del>[[<del class=\"diffchange diffchange-inline\">Yunan matemati\u011fi</del>]]<del class=\"diffchange diffchange-inline\">nde rastlan\u0131r. (\u00d6zellikle </del>[[<del class=\"diffchange diffchange-inline\">\u00d6klid</del>]]<del class=\"diffchange diffchange-inline\">'in ''Elementler'' kitab\u0131nda) </del>[[<del class=\"diffchange diffchange-inline\">Giuseppe Peano</del>]] <del class=\"diffchange diffchange-inline\">(1858-1932)</del>, [[<del class=\"diffchange diffchange-inline\">David Hilbert</del>]] <del class=\"diffchange diffchange-inline\">(1862-1943) ve di\u011ferlerinin ge\u00e7 19 y\u00fczy\u0131lda belitsel sistemler \u00fczerine kurduklar\u0131 \u00e7al\u0131\u015fmalar\u0131ndan beri matematiksel ara\u015ft\u0131rmada do\u011fruyu kurman\u0131n gelene\u011fi de\u011fi\u015fti. (Art\u0131k uygun </del>olarak <del class=\"diffchange diffchange-inline\">se\u00e7ilen </del>[[<del class=\"diffchange diffchange-inline\">aksiyom</del>]] ve <del class=\"diffchange diffchange-inline\">tan\u0131mlardan titiz bir \u015fekilde </del>[[<del class=\"diffchange diffchange-inline\">t\u00fcmdengelim</del>]] <del class=\"diffchange diffchange-inline\">yap\u0131lmaktad\u0131r</del>.<del class=\"diffchange diffchange-inline\">) Matematik </del>[[<del class=\"diffchange diffchange-inline\">R\u00f6nesans</del>]]<del class=\"diffchange diffchange-inline\">'a kadar g\u00f6rece yava\u015f geli\u015fti. Sonra matematikteki yenilikler di\u011fer yeni bilimsel ke\u0219iflerle etkile\u0219erek matematiksel ke\u0219iflerde </del>g\u00fcn\u00fcm\u00fczde <del class=\"diffchange diffchange-inline\">h\u00e2l\u00e2 devam eden h\u0131zl\u0131 bir art\u0131\u015f sa\u011flad\u0131</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Say\u0131lar\u0131n pratik kullan\u0131mlar\u0131n\u0131n yan\u0131 s\u0131ra, d\u00fcnya genelinde k\u00fclt\u00fcrel bir \u00f6nemi de bulunmaktad\u0131r.{{r|Gilsdorf_2012}}{{r|Restivo_1992}} \u00d6rne\u011fin, Bat\u0131 toplumunda, </ins>[[<ins class=\"diffchange diffchange-inline\">13 (say\u0131)|13 say\u0131s\u0131</ins>]] <ins class=\"diffchange diffchange-inline\">genellikle </ins>[[<ins class=\"diffchange diffchange-inline\">u\u011fur</ins>]]<ins class=\"diffchange diffchange-inline\">suz olarak kabul edilir ve \"</ins>[[<ins class=\"diffchange diffchange-inline\">milyon</ins>]]<ins class=\"diffchange diffchange-inline\">\"</ins>, <ins class=\"diffchange diffchange-inline\">kesin bir miktar yerine \"\u00e7ok\" anlam\u0131na gelebilir.{{r|Gilsdorf_2012}} Art\u0131k </ins>[[<ins class=\"diffchange diffchange-inline\">sahte bilim</ins>]] olarak <ins class=\"diffchange diffchange-inline\">kabul edilse de, say\u0131lar\u0131n mistik bir \u00f6nemine dair inan\u00e7, bilinen ad\u0131yla </ins>[[<ins class=\"diffchange diffchange-inline\">n\u00fcmeroloji</ins>]]<ins class=\"diffchange diffchange-inline\">, antik </ins>ve [[<ins class=\"diffchange diffchange-inline\">Orta \u00c7a\u011f</ins>]] <ins class=\"diffchange diffchange-inline\">d\u00fc\u015f\u00fcncelerine derinden i\u015flemi\u015ftir</ins>.<ins class=\"diffchange diffchange-inline\">{{r|Ore_1988}} N\u00fcmeroloji, </ins>[[<ins class=\"diffchange diffchange-inline\">Yunan matemati\u011fi</ins>]]<ins class=\"diffchange diffchange-inline\">nin geli\u015fimini b\u00fcy\u00fck \u00f6l\u00e7\u00fcde etkilemi\u015f ve </ins>g\u00fcn\u00fcm\u00fczde <ins class=\"diffchange diffchange-inline\">hala ilgi \u00e7eken bir\u00e7ok say\u0131 teorisi problemi \u00fczerine ara\u015ft\u0131rmalar\u0131 te\u015fvik etmi\u015ftir</ins>.<ins class=\"diffchange diffchange-inline\">{{r|Ore_1988}}</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>[[<del class=\"diffchange diffchange-inline\">Galileo Galilei</del>]] <del class=\"diffchange diffchange-inline\">(1564-1642) \"Kainat dedi\u011fimiz kitap, yaz\u0131ld\u0131\u011f\u0131 dil ve harfler \u00f6\u011frenilmedik\u00e7e anla\u015f\u0131lamaz</del>. <del class=\"diffchange diffchange-inline\">O</del>, <del class=\"diffchange diffchange-inline\">matematik dilinde yaz\u0131lm\u0131\u015f; harfleri \u00fc\u00e7gen</del>, <del class=\"diffchange diffchange-inline\">daire ve di\u011fer geometrik \u015fekillerdir. Bu dil ve harfler olmaks\u0131z\u0131n kitab\u0131n tek bir kelimesinin anla\u015f\u0131lmas\u0131na olanak yoktur. Bunlar olmaks\u0131z\u0131n yap\u0131lan karanl\u0131k bir labirentte ama\u00e7s\u0131zca dola\u015fmakt\u0131r.\" </del>[[<del class=\"diffchange diffchange-inline\">Carl Friedrich Gauss</del>]] (<del class=\"diffchange diffchange-inline\">1777-1855</del>) <del class=\"diffchange diffchange-inline\">matemati\u011fi bilimlerin krali\u00e7esine benzetmi\u015ftir. [[Benjamin Peirce</del>]] <del class=\"diffchange diffchange-inline\">(1809-1880) matematik i\u00e7in bilimlerin sonu\u00e7lar\u0131n\u0131n \u00e7izilmesi i\u00e7in gereken bilim demi\u015ftir. David Hilbert </del>\"<del class=\"diffchange diffchange-inline\">Biz burada geli\u015fig\u00fczel konu\u015fmay\u0131z. Matematik \u015fart ko\u015fulan rastgele kurallar\u0131n oldu\u011fu </del>bir <del class=\"diffchange diffchange-inline\">oyun gibi de\u011fildir</del>. <del class=\"diffchange diffchange-inline\">O yaln\u0131zca i\u00e7sel gereklili\u011fin oldu\u011fu kavramsal bir sistemdir</del>, <del class=\"diffchange diffchange-inline\">aksi hi\u00e7bir \u015fey de\u011fil</del>.<del class=\"diffchange diffchange-inline\">\" </del>[[<del class=\"diffchange diffchange-inline\">Albert Einstein</del>]] <del class=\"diffchange diffchange-inline\">(1879-1955)</del>, \"<del class=\"diffchange diffchange-inline\">Matematik kesin oldu\u011funda ger\u00e7e\u011fi yans\u0131tmaz</del>, <del class=\"diffchange diffchange-inline\">ger\u00e7e\u011fi yans\u0131tt\u0131\u011f\u0131nda kesin de\u011fildir</del>.\" <del class=\"diffchange diffchange-inline\">Frans\u0131z matematik\u00e7i [[Claire Voisin]]</del>, <del class=\"diffchange diffchange-inline\">\"Matematikte yarat\u0131c\u0131 itki</del>, <del class=\"diffchange diffchange-inline\">her yerinde kendini ifade etmeyi denemesidir</del>.\" <del class=\"diffchange diffchange-inline\">der.</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">19. y\u00fczy\u0131lda matematik\u00e7iler, say\u0131lar\u0131n baz\u0131 \u00f6zelliklerini payla\u015fan ve kavram\u0131 geni\u015fletiyor olarak g\u00f6r\u00fclebilecek pek \u00e7ok farkl\u0131 soyutlama geli\u015ftirmeye ba\u015flad\u0131lar. \u0130lkler aras\u0131nda, </ins>[[<ins class=\"diffchange diffchange-inline\">karma\u015f\u0131k say\u0131</ins>]] <ins class=\"diffchange diffchange-inline\">sistemini \u00e7e\u015fitli \u015fekillerde geni\u015fleten veya de\u011fi\u015ftiren [[hiperkompleks say\u0131]]lar bulunmaktad\u0131r</ins>. <ins class=\"diffchange diffchange-inline\">Modern matematikte</ins>, <ins class=\"diffchange diffchange-inline\">say\u0131 sistemleri</ins>, [[<ins class=\"diffchange diffchange-inline\">halka (matematik)|halkalar</ins>]] <ins class=\"diffchange diffchange-inline\">ve [[alan </ins>(<ins class=\"diffchange diffchange-inline\">matematik</ins>)<ins class=\"diffchange diffchange-inline\">|alanlar</ins>]] <ins class=\"diffchange diffchange-inline\">gibi daha genel cebirsel yap\u0131lar\u0131n \u00f6nemli \u00f6zel \u00f6rnekleri olarak kabul edilir ve \"say\u0131</ins>\" <ins class=\"diffchange diffchange-inline\">teriminin uygulanmas\u0131, temel bir \u00f6neme sahip olmaks\u0131z\u0131n, </ins>bir <ins class=\"diffchange diffchange-inline\">konvansiyon meselesidir</ins>.<ins class=\"diffchange diffchange-inline\"><ref>Gouv\u00eaa</ins>, <ins class=\"diffchange diffchange-inline\">Fernando Q</ins>. <ins class=\"diffchange diffchange-inline\">''</ins>[[<ins class=\"diffchange diffchange-inline\">The Princeton Companion to Mathematics</ins>]]<ins class=\"diffchange diffchange-inline\">, II.1 B\u00f6l\u00fcm\u00fc</ins>, \"<ins class=\"diffchange diffchange-inline\">The Origins of Modern Mathematics\"'', s. 82. Princeton University Press</ins>, <ins class=\"diffchange diffchange-inline\">28 Eyl\u00fcl 2008. {{isbn|978-0-691-11880-2}}</ins>. \"<ins class=\"diffchange diffchange-inline\">Today, it is no longer that easy to decide what counts as a 'number.' The objects from the original sequence of 'integer, rational, real, and complex' are certainly numbers, but so are the ''p''-adics. The quaternions are rarely referred to as 'numbers</ins>,<ins class=\"diffchange diffchange-inline\">' on the other hand</ins>, <ins class=\"diffchange diffchange-inline\">though they can be used to coordinatize certain mathematical notions</ins>.\"<ins class=\"diffchange diffchange-inline\"></ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Matematik d\u00fcnya genelinde [[do\u011fa bilimleri]], [[m\u00fchendislik]], [[teknoloji]] ve [[maliye]] gibi bir\u00e7ok alan\u0131n temel arac\u0131d\u0131r. Uygulamal\u0131 matematik, matematiksel bilginin di\u011fer alanlara uygulanmas\u0131yla ilgilidir. Bu uygulamalar sayesinde [[istatistik]] ve [[oyun teorisi]] gibi tamam\u0131yla yeni matematik disiplinleri do\u011fmu\u015ftur. Ayr\u0131ca matematik\u00e7iler [[soyut matematik]]le ak\u0131llar\u0131nda herhangi bir kullan\u0131m olmadan da yaln\u0131zca matematik yapmak i\u00e7in u\u011fra\u015f\u0131rlar. Soyut matematikle uygulamal\u0131 matemati\u011fi ay\u0131ran belirgin bir \u00e7izgi yoktur. Soyut matematikteki ke\u015fifler s\u0131kl\u0131kla pratik matematik uygulamalar\u0131n\u0131n ba\u015flat\u0131c\u0131s\u0131 olurlar.</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Tarih\u00e7e==</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>== <del class=\"diffchange diffchange-inline\">K\u00f6keni </del>==</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>==<ins class=\"diffchange diffchange-inline\">=Say\u0131lar\u0131n ilk kullan\u0131m\u0131=</ins>==</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">'''Matematik kelimesi'''</del>, <del class=\"diffchange diffchange-inline\">k\u00f6ken olarak </del>[[<del class=\"diffchange diffchange-inline\">Antik Yunanca</del>]]<del class=\"diffchange diffchange-inline\">'daki '''\u03bc\u03ac\u03b8\u03b7\u03bc\u03b1''' (''m\u00e1thema'') kelimesinden t\u00fcretilmi\u015ftir</del>. Bu <del class=\"diffchange diffchange-inline\">kelime</del>, <del class=\"diffchange diffchange-inline\">\"\u00f6\u011frenme\"</del>, <del class=\"diffchange diffchange-inline\">\"bilme\"</del>, <del class=\"diffchange diffchange-inline\">\"bilgi\" veya \"\u00f6\u011fretim\" anlamlar\u0131na gelir. Yunanca '''\u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03cc\u03c2''' (''mathematik\u00f3s'') kelimesi ise \"\u00f6\u011frenmeye yatk\u0131n\" veya \"\u00f6\u011frenmekten ho\u015flanan\" anlam\u0131nda kullan\u0131lm\u0131\u015ft\u0131r. Matematik terimi</del>, <del class=\"diffchange diffchange-inline\">Latincede '''mathematica'''</del>, <del class=\"diffchange diffchange-inline\">Frans\u0131zcada ise '''math\u00e9matique''' formunda yer alm\u0131\u015f ve T\u00fcrk\u00e7eye Frans\u0131zca \u00fczerinden ge\u00e7mi\u015ftir</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Kemikler ve \u00fczerlerine kesik izleri yap\u0131lm\u0131\u015f di\u011fer eserler ile ke\u015ffedilmi\u015ftir ki</ins>, <ins class=\"diffchange diffchange-inline\">bir\u00e7ok ki\u015fi bunlar\u0131n </ins>[[<ins class=\"diffchange diffchange-inline\">\u00e7etele</ins>]] <ins class=\"diffchange diffchange-inline\">oldu\u011funa inanmaktad\u0131r</ins>.<ins class=\"diffchange diffchange-inline\">{{r|Marshack_1971}} </ins>Bu <ins class=\"diffchange diffchange-inline\">\u00e7eteleler</ins>, <ins class=\"diffchange diffchange-inline\">ge\u00e7en zaman\u0131n</ins>, <ins class=\"diffchange diffchange-inline\">\u00f6rne\u011fin g\u00fcn say\u0131s\u0131n\u0131n</ins>, <ins class=\"diffchange diffchange-inline\">ay d\u00f6ng\u00fclerinin say\u0131lmas\u0131 ya da \u00e7e\u015fitli miktarlar\u0131n</ins>, <ins class=\"diffchange diffchange-inline\">\u00f6rne\u011fin hayvan say\u0131lar\u0131n\u0131n kayd\u0131</ins>, <ins class=\"diffchange diffchange-inline\">tutulmas\u0131 i\u00e7in kullan\u0131lm\u0131\u015f olabilir</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Osmanl\u0131 d\u00f6neminde</del>, <del class=\"diffchange diffchange-inline\">matematik terimi yerine genellikle Arap\u00e7a k\u00f6kenli '''riyaziye''' kelimesi kullan\u0131lm\u0131\u015ft\u0131r</del>. <del class=\"diffchange diffchange-inline\">Riyaziye, hesaplama ve matematik anlamlar\u0131na gelir</del>. <del class=\"diffchange diffchange-inline\">Modern T\u00fcrk\u00e7ede matematik</del>, <del class=\"diffchange diffchange-inline\">\u00f6\u011frenme</del>, <del class=\"diffchange diffchange-inline\">bilim ve bilgiyle ili\u015fkilendirilen bu tarihsel k\u00f6kenlerin bir devam\u0131 </del>olarak <del class=\"diffchange diffchange-inline\">kullan\u0131lmaktad\u0131r</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu \u00e7etele - \u00e7izik atma sistemi</ins>, <ins class=\"diffchange diffchange-inline\">modern [[Onlu say\u0131 sistemi|ondal\u0131k]] g\u00f6sterimdeki gibi basamak de\u011feri kavram\u0131na sahip de\u011fildir</ins>. <ins class=\"diffchange diffchange-inline\">Bu da b\u00fcy\u00fck say\u0131lar\u0131n temsilini s\u0131n\u0131rlar</ins>. <ins class=\"diffchange diffchange-inline\">Yine de</ins>, <ins class=\"diffchange diffchange-inline\">\u00e7etele - \u00e7izik atma sistemleri</ins>, <ins class=\"diffchange diffchange-inline\">ilk t\u00fcr soyut say\u0131 sistemi </ins>olarak <ins class=\"diffchange diffchange-inline\">kabul edilir</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Matematik e\u011fitimi ==</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Basamak kavram\u0131na sahip bilinen ilk sistem, M.\u00d6. 3400 civar\u0131na ait Antik Mezopotamya \u00f6l\u00e7\u00fc birimleri sistemidir ve bilinen en eski [[onlu say\u0131 sistemi]] ise M.\u00d6. 3100 y\u0131l\u0131nda [[M\u0131s\u0131r]]'da g\u00f6zlemlenmi\u015ftir.</ins>{{<ins class=\"diffchange diffchange-inline\">r</ins>|<ins class=\"diffchange diffchange-inline\">Buffalo_2012</ins>}}</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>{{<del class=\"diffchange diffchange-inline\">Ana</del>|<del class=\"diffchange diffchange-inline\">Matematik e\u011fitimi</del>}}</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Matematik</del>, <del class=\"diffchange diffchange-inline\">hem bilimsel alanlarda hem de g\u00fcnl\u00fck ya\u015famda s\u0131k\u00e7a kar\u015f\u0131la\u015f\u0131lan </del>bir <del class=\"diffchange diffchange-inline\">disiplindir</del>. <del class=\"diffchange diffchange-inline\">Temelleri </del>[[<del class=\"diffchange diffchange-inline\">Mant\u0131k|mant\u0131\u011fa</del>]] <del class=\"diffchange diffchange-inline\">dayanan bu alan</del>, <del class=\"diffchange diffchange-inline\">bireylere zihinsel geli\u015fim sa\u011flarken rasyonel d\u00fc\u015f\u00fcnme becerisi kazand\u0131r\u0131r</del>. <del class=\"diffchange diffchange-inline\">Matematik e\u011fitimi, bireylere sistemli, mant\u0131kl\u0131 ve tutarl\u0131 bir d\u00fc\u015f\u00fcnce yap\u0131s\u0131 kazand\u0131rman\u0131n yan\u0131 s\u0131ra \u00f6zg\u00fcr ve \u00f6nyarg\u0131s\u0131z bir d\u00fc\u015f\u00fcnce ortam\u0131 yarat\u0131r</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Rakamlar===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Ana|Say\u0131 sistemi}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Say\u0131lar</ins>, <ins class=\"diffchange diffchange-inline\">say\u0131lar\u0131 temsil etmek i\u00e7in kullan\u0131lan semboller olan '''rakamlar'''dan ay\u0131rt edilmelidir. M\u0131s\u0131rl\u0131lar ilk \u015fifreli rakam sistemini icat ettiler ve Yunanlar sayma say\u0131lar\u0131n\u0131 \u0130yon ve Dorik alfabesine aktararak bu y\u00f6ntemi takip ettiler.{{r|Chrisomalis_2003}} Roma rakamlar\u0131, Roma alfabesinden harflerin kombinasyonlar\u0131n\u0131 kullanan </ins>bir <ins class=\"diffchange diffchange-inline\">sistem, Avrupa'da 14</ins>. <ins class=\"diffchange diffchange-inline\">y\u00fczy\u0131l\u0131n sonlar\u0131na do\u011fru </ins>[[<ins class=\"diffchange diffchange-inline\">Hint-Arap rakam sistemi</ins>]]<ins class=\"diffchange diffchange-inline\">nin yay\u0131lmas\u0131na kadar bask\u0131n kald\u0131 ve Hint-Arap rakam sistemi g\u00fcn\u00fcm\u00fczde d\u00fcnyada say\u0131lar\u0131 temsil etmek i\u00e7in kullan\u0131lan en yayg\u0131n sistem oldu.{{r|Cengage_Learning2}} Bu sistemin etkinli\u011finin sebebinin</ins>, <ins class=\"diffchange diffchange-inline\">M.S</ins>. <ins class=\"diffchange diffchange-inline\">500 civar\u0131nda antik Hint matematik\u00e7iler taraf\u0131ndan geli\u015ftirilen [[s\u0131f\u0131r]] sembol\u00fc oldu\u011fu d\u00fc\u015f\u00fcn\u00fclmektedir</ins>.<ins class=\"diffchange diffchange-inline\">{{r|Cengage_Learning2}}</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Matematik dersleri</del>, <del class=\"diffchange diffchange-inline\">ilk\u00f6\u011fretimden y\u00fcksek\u00f6\u011fretime kadar t\u00fcm e\u011fitim seviyelerinde </del>yer al\u0131r. <del class=\"diffchange diffchange-inline\">\u0130lk\u00f6\u011fretim d\u00fczeyinde matematik</del>, <del class=\"diffchange diffchange-inline\">temel kavramlar\u0131n anla\u015f\u0131lmas\u0131 </del>ve <del class=\"diffchange diffchange-inline\">orta\u00f6\u011fretime haz\u0131rl\u0131k amac\u0131 ta\u015f\u0131rken; </del>[[<del class=\"diffchange diffchange-inline\">orta\u00f6\u011fretim</del>]] <del class=\"diffchange diffchange-inline\">d\u00fczeyinde ise y\u00fcksek\u00f6\u011fretim ve ileri d\u00fczey akademik \u00e7al\u0131\u015fmalara temel olu\u015fturur</del>. Bu <del class=\"diffchange diffchange-inline\">s\u00fcre\u00e7</del>, <del class=\"diffchange diffchange-inline\">bireylerin problem \u00e7\u00f6zme, analitik d\u00fc\u015f\u00fcnme </del>ve <del class=\"diffchange diffchange-inline\">d\u00fczenli \u00e7al\u0131\u015fma becerilerini geli\u015ftirmelerine olanak tan\u0131r</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===S\u0131f\u0131r===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Dosya:Khmer Numerals - 605 from the Sambor inscriptions.jpg|k\u00fc\u00e7\u00fckresim|M.S. 683 tarihli bir yaz\u0131ttan al\u0131nan [[Kmer rakamlar\u0131]] ile yaz\u0131lm\u0131\u015f '605' say\u0131s\u0131. S\u0131f\u0131r\u0131n ondal\u0131k bir rakam olarak erken bir kullan\u0131m\u0131d\u0131r.]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[S\u0131f\u0131r]]'\u0131n belgelenmi\u015f ilk bilinen kullan\u0131m\u0131 M.S. 628 y\u0131l\u0131na aittir ve ''[[Br\u0101hmasphu\u1e6dasiddh\u0101nta]]'' i\u00e7inde</ins>, <ins class=\"diffchange diffchange-inline\">Hint matematik\u00e7i [[Brahmagupta]]'n\u0131n ana eserinde </ins>yer al\u0131r. <ins class=\"diffchange diffchange-inline\">Brahmagupta</ins>, <ins class=\"diffchange diffchange-inline\">0'\u0131 bir say\u0131 olarak ele alm\u0131\u015f </ins>ve <ins class=\"diffchange diffchange-inline\">aralar\u0131nda </ins>[[<ins class=\"diffchange diffchange-inline\">s\u0131f\u0131ra b\u00f6lme|b\u00f6lme</ins>]] <ins class=\"diffchange diffchange-inline\">de dahil olmak \u00fczere, s\u0131f\u0131r\u0131 i\u00e7eren i\u015flemleri tart\u0131\u015fm\u0131\u015ft\u0131r</ins>. Bu <ins class=\"diffchange diffchange-inline\">d\u00f6nemde (7. y\u00fczy\u0131l)</ins>, <ins class=\"diffchange diffchange-inline\">s\u0131f\u0131r kavram\u0131 Kambo\u00e7ya'ya [[Kmer rakamlar\u0131]] olarak ula\u015f\u0131rken s\u0131f\u0131r\u0131n daha sonra [[\u00c7in]] </ins>ve <ins class=\"diffchange diffchange-inline\">[[\u0130slam d\u00fcnyas\u0131]]na yay\u0131ld\u0131\u011f\u0131 g\u00f6r\u00fclmektedir</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Matemati\u011fin alanlar\u0131 ==</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">''Br\u0101hmasphu\u1e6dasiddh\u0101nta'' adl\u0131 eseriyle Brahmagupta</ins>, <ins class=\"diffchange diffchange-inline\">s\u0131f\u0131r\u0131 say\u0131 olarak ele alan bilinen ilk metni yazm\u0131\u015ft\u0131r </ins>ve <ins class=\"diffchange diffchange-inline\">bu y\u00fczden s\u0131kl\u0131kla s\u0131f\u0131r konseptini ilk tan\u0131mlayan ki\u015fi olarak g\u00f6r\u00fcl\u00fcr</ins>. <ins class=\"diffchange diffchange-inline\">Brahmagupta, s\u0131f\u0131r\u0131n hem negatif hem de pozitif say\u0131larla birlikte kullan\u0131labilmesine y\u00f6nelik kurallar belirlemi\u015ftir; mesela \"pozitif bir say\u0131ya s\u0131f\u0131r eklenirse sonu\u00e7 yine pozitif say\u0131 olur</ins>, <ins class=\"diffchange diffchange-inline\">negatif bir say\u0131ya s\u0131f\u0131r eklenirse sonu\u00e7 negatif say\u0131 olur\" gibi. </ins>''<ins class=\"diffchange diffchange-inline\">Br\u0101hmasphu\u1e6dasiddh\u0101nta</ins>''<ins class=\"diffchange diffchange-inline\">, s\u0131f\u0131r\u0131 yaln\u0131zca di\u011fer bir say\u0131n\u0131n yerini tutan bir sembol ya da miktar\u0131n olmamas\u0131n\u0131 belirten bir i\u015faret olarak de\u011fil, ayn\u0131 zamanda ba\u011f\u0131ms\u0131z bir say\u0131 olarak kabul eden ilk yaz\u0131l\u0131 kaynaklardan biridir </ins>ve <ins class=\"diffchange diffchange-inline\">bu \u00f6zelli\u011fiyle Babil matemati\u011finden ya da Ptolemy </ins>ve <ins class=\"diffchange diffchange-inline\">Romal\u0131lar\u0131n yakla\u015f\u0131mlar\u0131ndan ayr\u0131l\u0131r</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Matematik</del>, <del class=\"diffchange diffchange-inline\">tarih boyunca s\u00fcrekli geli\u015fim g\u00f6stermi\u015f </del>ve <del class=\"diffchange diffchange-inline\">farkl\u0131 alanlara ayr\u0131lm\u0131\u015ft\u0131r</del>. <del class=\"diffchange diffchange-inline\">[[R\u00f6nesans]] \u00f6ncesinde matematik</del>, <del class=\"diffchange diffchange-inline\">iki ana dal \u00fczerinde yo\u011funla\u015fmaktayd\u0131: </del>'''<del class=\"diffchange diffchange-inline\">[[aritmetik]]</del>'<del class=\"diffchange diffchange-inline\">'' (say\u0131lar\u0131n i\u015flenmesi) </del>ve <del class=\"diffchange diffchange-inline\">'''[[geometri]]''' (\u015fekillerin incelenmesi). Bu d\u00f6nemde [[N\u00fcmeroloji|numeroloji]] </del>ve <del class=\"diffchange diffchange-inline\">[[astroloji]] gibi sahte bilimler, matematikten a\u00e7\u0131k\u00e7a ayr\u0131lmam\u0131\u015ft\u0131</del>.</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">R\u00f6nesans d\u00f6neminde matemati\u011fin kapsam\u0131 geni\u015fledi ve iki yeni dal ortaya \u00e7\u0131kt\u0131. '''</del>[[<del class=\"diffchange diffchange-inline\">Cebir</del>]]''', <del class=\"diffchange diffchange-inline\">matematiksel ifadelerin sembollerle temsil edilmesi ve i\u015flenmesi \u00fczerine odaklan\u0131rken, </del>'''[[<del class=\"diffchange diffchange-inline\">kalk\u00fcl\u00fcs</del>]]''' <del class=\"diffchange diffchange-inline\">de\u011fi\u015fken nicelikler aras\u0131ndaki s\u00fcrekli ili\u015fkilerin incelenmesini sa\u011flad\u0131. Kalk\u00fcl\u00fcs, iki temel alt dala ayr\u0131l\u0131r: </del>'''<del class=\"diffchange diffchange-inline\">t\u00fcrev hesab\u0131</del>''' <del class=\"diffchange diffchange-inline\">ve </del>''<del class=\"diffchange diffchange-inline\">'integral hesab\u0131</del>'''<del class=\"diffchange diffchange-inline\">. R\u00f6nesans sonras\u0131 d\u00f6nemde matematik, aritmetik, geometri, cebir ve kalk\u00fcl\u00fcs olmak \u00fczere d\u00f6rt ana dalda incelendi. Bu s\u0131n\u0131fland\u0131rma 19. y\u00fczy\u0131l\u0131n sonlar\u0131na kadar s\u00fcrd\u00fc</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">0 say\u0131s\u0131n\u0131n kullan\u0131m\u0131, </ins>[[<ins class=\"diffchange diffchange-inline\">Basamak (matematik)|basamak</ins>]] <ins class=\"diffchange diffchange-inline\">sistemlerinde bir yer tutucu rakam olarak kullan\u0131m\u0131ndan ayr\u0131lmal\u0131d\u0131r. Bir\u00e7ok antik metin 0 rakam\u0131n\u0131 kullanm\u0131\u015ft\u0131r. Babil ve M\u0131s\u0131r metinlerinde bu kullan\u0131ma rastlan\u0131r. M\u0131s\u0131rl\u0131lar, \u00e7ift giri\u015fli muhasebe sistemlerinde s\u0131f\u0131r bakiyeyi belirtmek i\u00e7in '</ins>'<ins class=\"diffchange diffchange-inline\">nfr</ins>'' <ins class=\"diffchange diffchange-inline\">kelimesini kullanm\u0131\u015flard\u0131r. Hint metinleri</ins>, '<ins class=\"diffchange diffchange-inline\">'bo\u015fluk</ins>'' <ins class=\"diffchange diffchange-inline\">kavram\u0131n\u0131 ifade etmek i\u00e7in </ins>[[<ins class=\"diffchange diffchange-inline\">Sanskrit\u00e7e</ins>]] ''<ins class=\"diffchange diffchange-inline\">Shunye</ins>'' <ins class=\"diffchange diffchange-inline\">veya </ins>''<ins class=\"diffchange diffchange-inline\">shunya</ins>'' <ins class=\"diffchange diffchange-inline\">kelimesini kullanm\u0131\u015ft\u0131r. Matematik metinlerinde bu kelime genellikle s\u0131f\u0131r say\u0131s\u0131na at\u0131fta bulunur.{{r|Sunsite_2012}} Benzer \u015fekilde, M.\u00d6. 5. y\u00fczy\u0131lda [[Panini]] Sanskrit dilinin cebirsel bir dilbilgisi i\u00e7in erken bir \u00f6rnek olan </ins>''<ins class=\"diffchange diffchange-inline\">[[Ashtadhyayi]]</ins>'''<ins class=\"diffchange diffchange-inline\">de bo\u015f (s\u0131f\u0131r) i\u015flevsel s\u00f6zc\u00fc\u011f\u00fcn\u00fc kullanm\u0131\u015ft\u0131r (ayr\u0131ca [[Pingala]]</ins>'<ins class=\"diffchange diffchange-inline\">ya bak\u0131n\u0131z)</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">19</del>. y\u00fczy\u0131lda <del class=\"diffchange diffchange-inline\">aksiyomatik y\u00f6ntemin sistemle\u015ftirilmesi ve matemati\u011fin temel krizlerinin \u00e7\u00f6z\u00fclmesi, matemati\u011fin h\u0131zla yeni alanlara ayr\u0131lmas\u0131n\u0131 sa\u011flad\u0131</del>. <del class=\"diffchange diffchange-inline\">Kombinatorik gibi alanlar uzun s\u00fcredir incelenmekteydi ancak 17</del>. <del class=\"diffchange diffchange-inline\">y\u00fczy\u0131ldan itibaren ba\u011f\u0131ms\u0131z </del>bir <del class=\"diffchange diffchange-inline\">matematik dal\u0131 olarak geli\u015fti. Modern matematikte 2020 </del>[[<del class=\"diffchange diffchange-inline\">Matematik Konu S\u0131n\u0131fland\u0131rmas\u0131</del>]]<del class=\"diffchange diffchange-inline\">, en az 63 birinci d\u00fczey alan tan\u0131mlamaktad\u0131r</del>. Bu <del class=\"diffchange diffchange-inline\">alanlardan baz\u0131lar\u0131 (\u00f6rne\u011fin say\u0131 teorisi </del>ve <del class=\"diffchange diffchange-inline\">geometri)</del>, <del class=\"diffchange diffchange-inline\">tarihsel matematik alanlar\u0131na dayan\u0131rken di\u011ferleri (\u00f6rne\u011fin matematiksel mant\u0131k </del>ve <del class=\"diffchange diffchange-inline\">temeller) </del>20. <del class=\"diffchange diffchange-inline\">y\u00fczy\u0131lda ortaya \u00e7\u0131km\u0131\u015ft\u0131r</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Meksika'n\u0131n g\u00fcney-orta b\u00f6lgesinde ya\u015fayan ge\u00e7 d\u00f6nem [[Olmek]] halk\u0131, Yeni D\u00fcnya'da, muhtemelen M.\u00d6. 4</ins>. y\u00fczy\u0131lda <ins class=\"diffchange diffchange-inline\">ama kesinlikle M</ins>.<ins class=\"diffchange diffchange-inline\">\u00d6</ins>. <ins class=\"diffchange diffchange-inline\">40 y\u0131l\u0131na kadar, s\u0131f\u0131r i\u00e7in </ins>bir <ins class=\"diffchange diffchange-inline\">sembol, bir kabuk </ins>[[<ins class=\"diffchange diffchange-inline\">glif</ins>]]<ins class=\"diffchange diffchange-inline\">i kullanmaya ba\u015flam\u0131\u015ft\u0131r</ins>. Bu <ins class=\"diffchange diffchange-inline\">sembol, [[Maya rakamlar\u0131]]n\u0131n </ins>ve <ins class=\"diffchange diffchange-inline\">[[Maya takvimi]]nin ayr\u0131lmaz bir par\u00e7as\u0131 haline gelir. Maya matemati\u011fi</ins>, <ins class=\"diffchange diffchange-inline\">temel olarak 4 </ins>ve <ins class=\"diffchange diffchange-inline\">5'i, </ins>20 <ins class=\"diffchange diffchange-inline\">taban\u0131nda yaz\u0131lm\u0131\u015f olarak kullanm\u0131\u015ft\u0131r</ins>. <ins class=\"diffchange diffchange-inline\">George I. S\u00e1nchez, 1961'de temel 4, temel 5 \"parmak\" abak\u00fcs\u00fcn\u00fc yay\u0131mlar</ins>.<ins class=\"diffchange diffchange-inline\">{{r|George_1961}}</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">=== </del>'''<del class=\"diffchange diffchange-inline\">Modern Matemati\u011fin Uygulamalar\u0131</del>''' <del class=\"diffchange diffchange-inline\">===</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">M.S. 130 y\u0131l\u0131na gelindi\u011finde, [[Hipparkos]] ve Babillilerden etkilenen [[Ptolemy]], [[altm\u0131\u015fl\u0131k say\u0131 sistemi]] i\u00e7inde ba\u015fka bir yerde [[Yunan rakamlar\u0131]] kullan\u0131rken 0 i\u00e7in uzun bir \u00fcst \u00e7izgi ile k\u00fc\u00e7\u00fck bir daire \u015feklinde bir sembol kullan\u0131yordu. Yaln\u0131zca bir yer tutucu olarak de\u011fil, tek ba\u015f\u0131na kullan\u0131ld\u0131\u011f\u0131 i\u00e7in bu [[Yunan rakamlar\u0131#Helenistik s\u0131f\u0131r|Helenistik s\u0131f\u0131r]], Eski D\u00fcnya</ins>'<ins class=\"diffchange diffchange-inline\">da </ins>''<ins class=\"diffchange diffchange-inline\">belgelenmi\u015f</ins>'' <ins class=\"diffchange diffchange-inline\">ger\u00e7ek bir s\u0131f\u0131r\u0131n ilk kullan\u0131m\u0131yd\u0131. Daha sonraki [[Bizans \u0130mparatorlu\u011fu|Bizans]] elyazmalar\u0131nda, </ins>'<ins class=\"diffchange diffchange-inline\">'Syntaxis Mathematica'' (''Almagest'') eserinde</ins>, <ins class=\"diffchange diffchange-inline\">Helenistik s\u0131f\u0131r [[Yunan alfabesi|Yunan harfi]] [[Omikron]]'a (aksi takdirde anlam\u0131 70) d\u00f6n\u00fc\u015fm\u00fc\u015ft\u00fc</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Matematik</del>, <del class=\"diffchange diffchange-inline\">g\u00fcn\u00fcm\u00fczde bir\u00e7ok bilimsel ve teknolojik alanda kullan\u0131lmaktad\u0131r</del>. <del class=\"diffchange diffchange-inline\">\u00d6rne\u011fin:</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* '''Fourier analizi'''</del>, <del class=\"diffchange diffchange-inline\">veri iletimi ve s\u0131k\u0131\u015ft\u0131rma algoritmalar\u0131nda kullan\u0131l\u0131r. Uzun mesafelerde veri kayb\u0131n\u0131 azaltman\u0131n </del>yan\u0131 s\u0131ra <del class=\"diffchange diffchange-inline\">dijital m\u00fczik</del>, <del class=\"diffchange diffchange-inline\">video ve resimlerin s\u0131k\u0131\u015ft\u0131r\u0131lmas\u0131n\u0131 sa\u011flar</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bir ba\u015fka \u00f6zg\u00fcn s\u0131f\u0131r simgesi, 525 y\u0131l\u0131nda Dionysius Exiguus taraf\u0131ndan ilk kez belgelendirilmi\u015f olup</ins>, <ins class=\"diffchange diffchange-inline\">[[Roma rakamlar\u0131]]n\u0131n </ins>yan\u0131 s\u0131ra <ins class=\"diffchange diffchange-inline\">tablolarda yer alm\u0131\u015ft\u0131r; ancak bu</ins>, <ins class=\"diffchange diffchange-inline\">bir sembol yerine \"hi\u00e7lik\" anlam\u0131na gelen \"nulla\" kelimesi \u015feklinde ifade edilmi\u015ftir</ins>. <ins class=\"diffchange diffchange-inline\">Bir b\u00f6lme i\u015flemi sonucunda kalan olarak 0 elde edildi\u011finde</ins>, <ins class=\"diffchange diffchange-inline\">yine \"hi\u00e7lik\" anlam\u0131na gelen \"nihil\" kelimesi tercih edilmi\u015ftir</ins>. <ins class=\"diffchange diffchange-inline\">Bu Orta \u00c7a\u011f d\u00f6nemi s\u0131f\u0131rlar\u0131</ins>, <ins class=\"diffchange diffchange-inline\">sonraki d\u00f6nemlerde Paskalya</ins>'<ins class=\"diffchange diffchange-inline\">n\u0131n hesaplanmas\u0131nda g\u00f6rev alan t\u00fcm Orta \u00c7a\u011f hesap\u00e7\u0131lar\u0131 taraf\u0131ndan kullan\u0131lm\u0131\u015ft\u0131r</ins>. <ins class=\"diffchange diffchange-inline\">N harfinin tek ba\u015f\u0131na kullan\u0131m\u0131</ins>, [[<ins class=\"diffchange diffchange-inline\">Bede</ins>]] <ins class=\"diffchange diffchange-inline\">ya da bir \u00e7al\u0131\u015fma arkada\u015f\u0131 taraf\u0131ndan yakla\u015f\u0131k 725 y\u0131l\u0131nda Roma rakamlar\u0131n\u0131n yer ald\u0131\u011f\u0131 bir tabloda ger\u00e7ek bir s\u0131f\u0131r simgesi olarak kullan\u0131lm\u0131\u015ft\u0131r</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* '''Fraktal geometri'''</del>, <del class=\"diffchange diffchange-inline\">anten tasar\u0131m\u0131, k\u0131lcal damarlar\u0131n d\u00fczeni ve kan ak\u0131\u015f\u0131n\u0131n modellenmesinde uygulan\u0131r</del>.</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* '''Diferansiyel denklemler''' ve '''say\u0131sal analiz'''</del>, <del class=\"diffchange diffchange-inline\">dinamik sistemlerin modellenmesinde, u\u00e7ak tasar\u0131m\u0131nda ve uydu sistemlerinde kritik \u00f6neme sahiptir.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* '''Graf teorisi''</del>'<del class=\"diffchange diffchange-inline\">, veritabanlar\u0131n\u0131n analizi ve internet a\u011flar\u0131n\u0131n topolojik modellemesi gibi alanlarda kullan\u0131l\u0131r</del>. <del class=\"diffchange diffchange-inline\">Ayr\u0131ca, hastaneler gibi \u00f6nemli tesislerin ideal da\u011f\u0131l\u0131mlar\u0131n\u0131 belirlemek i\u00e7in kullan\u0131l\u0131r.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* '''Algoritmalar''', bilgisayar programlama ve yapay zeka sistemlerinin temelini olu\u015fturur.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* '''Cebirsel geometri'''</del>, [[<del class=\"diffchange diffchange-inline\">robotik</del>]] <del class=\"diffchange diffchange-inline\">modelleme ve bilgisayar oyunlar\u0131n\u0131n tasar\u0131m\u0131 gibi teknik alanlarda uygulan\u0131r</del>.</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Bu \u00f6rnekler, matemati\u011fin hem teorik hem de uygulamal\u0131 alanlarda ne kadar geni\u015f bir yelpazeye yay\u0131ld\u0131\u011f\u0131n\u0131 g\u00f6stermektedir. Matematik, bilimsel geli\u015fmelerin yan\u0131 s\u0131ra modern teknolojinin de vazge\u00e7ilmez bir par\u00e7as\u0131d\u0131r.</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Negatif say\u0131lar===</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Matemati\u011fin konular\u0131 ==</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Negatif say\u0131 kavram\u0131n\u0131n soyut bir anlay\u0131\u015f\u0131, M.\u00d6</ins>. <ins class=\"diffchange diffchange-inline\">100-50 y\u0131llar\u0131 aras\u0131nda \u00c7in</ins>'<ins class=\"diffchange diffchange-inline\">de erkenden kabul g\u00f6rm\u00fc\u015ft\u00fcr</ins>. '<ins class=\"diffchange diffchange-inline\">'</ins>[[<ins class=\"diffchange diffchange-inline\">Matematik Sanat\u0131 \u00dczerine Dokuz B\u00f6l\u00fcm</ins>]]<ins class=\"diffchange diffchange-inline\">'' adl\u0131 eser</ins>, <ins class=\"diffchange diffchange-inline\">geometrik \u015fekillerin alanlar\u0131n\u0131n hesaplanmas\u0131 y\u00f6ntemlerini sunmakta </ins>ve bu <ins class=\"diffchange diffchange-inline\">ba\u011flamda k\u0131rm\u0131z\u0131 \u00e7ubuklar pozitif </ins>[[<ins class=\"diffchange diffchange-inline\">katsay\u0131</ins>]]<ins class=\"diffchange diffchange-inline\">lar\u0131, siyah \u00e7ubuklar ise negatif katsay\u0131lar\u0131 temsil etmek \u00fczere kullan\u0131lm\u0131\u015ft\u0131r</ins>.{{<ins class=\"diffchange diffchange-inline\">r</ins>|<ins class=\"diffchange diffchange-inline\">Staszkow_2004</ins>}} <ins class=\"diffchange diffchange-inline\">Bat\u0131 literat\u00fcr\u00fcnde negatif say\u0131lara dair ilk at\u0131f, M</ins>.<ins class=\"diffchange diffchange-inline\">S</ins>. 3. <ins class=\"diffchange diffchange-inline\">y\u00fczy\u0131lda Yunanistan'da kaydedilmi\u015ftir</ins>. [[<ins class=\"diffchange diffchange-inline\">Diophantus</ins>]]<ins class=\"diffchange diffchange-inline\">, ''</ins>[[<ins class=\"diffchange diffchange-inline\">Arithmetika</ins>]]'' <ins class=\"diffchange diffchange-inline\">eserinde </ins>{{<ins class=\"diffchange diffchange-inline\">kayma</ins>|<ins class=\"diffchange diffchange-inline\">4'</ins>'<ins class=\"diffchange diffchange-inline\">x</ins>'' <ins class=\"diffchange diffchange-inline\">+ 20 </ins>{{=<ins class=\"diffchange diffchange-inline\">}} 0}} </ins>(<ins class=\"diffchange diffchange-inline\">\u00e7\u00f6z\u00fcm negatif</ins>) <ins class=\"diffchange diffchange-inline\">denklemine de\u011finmi\u015f ve bu denklemin mant\u0131ks\u0131z bir sonu\u00e7 ortaya koydu\u011funu ifade etmi\u015ftir</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">=== Say\u0131 teorisi ===</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Dosya:Spirale Ulam 150</del>.<del class=\"diffchange diffchange-inline\">jpg|k\u00fc\u00e7\u00fckresim|Bu, [[asal say\u0131]]lar\u0131n da\u011f\u0131l\u0131m\u0131n\u0131 g\u00f6steren Ulam spirali</del>'<del class=\"diffchange diffchange-inline\">dir</del>. <del class=\"diffchange diffchange-inline\">Sarmaldaki koyu k\u00f6\u015fegen \u00e7izgiler, art\u0131k Hardy ve Littlewood</del>'<del class=\"diffchange diffchange-inline\">un San\u0131s\u0131 F olarak bilinen bir varsay\u0131m olan ikinci dereceden bir polinomun asal olmas\u0131 ile bir de\u011feri olmas\u0131 aras\u0131ndaki varsay\u0131msal yakla\u015f\u0131k </del>[[<del class=\"diffchange diffchange-inline\">Ba\u011f\u0131ms\u0131zl\u0131k (olas\u0131l\u0131k teorisi)|ba\u011f\u0131ms\u0131zl\u0131\u011fa</del>]] <del class=\"diffchange diffchange-inline\">i\u015faret eder.]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Say\u0131 teorisi, [[say\u0131]]lar\u0131n, yani [[Do\u011fal say\u0131lar|do\u011fal say\u0131]]lar <math>(\\mathbb{N})</del>,<del class=\"diffchange diffchange-inline\"></math>'nin i\u015flenmesiyle ba\u015flad\u0131 </del>ve <del class=\"diffchange diffchange-inline\">daha sonra [[tam say\u0131]]lara <math>(\\Z)</math> ve [[Rasyonel say\u0131lar|rasyonel say\u0131]]lara <math>(\\Q).</math> do\u011fru geli\u015ftirildi. </del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Eskiden say\u0131 teorisine aritmetik denirdi ancak g\u00fcn\u00fcm\u00fczde </del>bu <del class=\"diffchange diffchange-inline\">terim \u00e7o\u011funlukla </del>[[<del class=\"diffchange diffchange-inline\">Say\u0131sal analiz|say\u0131sal hesaplamalar</del>]] <del class=\"diffchange diffchange-inline\">i\u00e7in kullan\u0131l\u0131r</del>.<del class=\"diffchange diffchange-inline\"><ref></del>{{<del class=\"diffchange diffchange-inline\">Kitap kayna\u011f\u0131</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |ba\u015fl\u0131k=Fundamentals of Number Theory</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |ad=William J. |soyad\u0131=LeVeque </del>|<del class=\"diffchange diffchange-inline\">yazarba\u011f\u0131=William J. LeVeque</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |tarih=5 Ocak 2014 |sayfalar=1-30| isbn=9780486141503 |yay\u0131nc\u0131=Dover Publications</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | url=https://www.google.com/books/edition/Fundamentals_of_Number_Theory/0y3DAgAAQBAJ?gbpv=1&pg=PA1</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>}}<del class=\"diffchange diffchange-inline\"></ref> Say\u0131 teorisinin k\u00f6keni eski [[Babil matemati\u011fi|Babil]] ve muhtemelen [[\u00c7in tarihi|\u00c7in]]'e dayanmaktad\u0131r</del>. <del class=\"diffchange diffchange-inline\">\u00d6nde gelen ilk say\u0131 teorisyenleri [[\u00d6klid]] ve [[Diophantus]] idi</del>.<del class=\"diffchange diffchange-inline\"><ref>{{Kitap kayna\u011f\u0131 |ba\u015fl\u0131k=The Queen of Mathematics: A Historically Motivated Guide to Number Theory |ad=Jay |soyad\u0131=Goldman |y\u0131l=1997 |sayfalar=1-</del>3<del class=\"diffchange diffchange-inline\">|yay\u0131nc\u0131=CRC Press | isbn=9781439864623 | url=https://books</del>.<del class=\"diffchange diffchange-inline\">google</del>.<del class=\"diffchange diffchange-inline\">com/books?id=A0FZDwAAQBAJ&pg=PP1 |eri\u015fimtarihi=18 Aral\u0131k 2022 | ar\u015fivurl=https://web.archive.org/web/20221218075534/https://books.google.com/books?id=A0FZDwAAQBAJ&pg=PP1 | ar\u015fivtarihi=18 Aral\u0131k 2022 | \u00f6l\u00fcurl=hay\u0131r }}</ref> Say\u0131 teorisinin soyut bi\u00e7imindeki modern \u00e7al\u0131\u015fmas\u0131 b\u00fcy\u00fck \u00f6l\u00e7\u00fcde </del>[[<del class=\"diffchange diffchange-inline\">Pierre de Fermat</del>]] <del class=\"diffchange diffchange-inline\">ve </del>[[<del class=\"diffchange diffchange-inline\">Leonhard Euler</del>]]'<del class=\"diffchange diffchange-inline\">e atfedilir. Alan, [[Adrien-Marie Legendre]] ve [[Carl Friedrich Gauss]]</del>'<del class=\"diffchange diffchange-inline\">un katk\u0131lar\u0131yla meyvesini verdi.<ref></del>{{<del class=\"diffchange diffchange-inline\">Kitap kayna\u011f\u0131</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> </del>|<del class=\"diffchange diffchange-inline\">ba\u015fl\u0131k=Number Theory, An Approach Through History From Hammurapi to Legendre</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |ad=Andr\u00e9 |soyad\u0131=Weil |yazarba\u011f\u0131=Andr\u00e9 Weil</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |y\u0131l=2007 | isbn=9780817645717 |sayfalar=1-3|yay\u0131nc\u0131=Birkh\u00e4user Boston</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | url=https://www.google.com/books/edition/Number_Theory/Ar7gBwAAQBAJ?hl=en&gbpv=1&pg=PA1</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">}}</ref> </del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Kolayca ifade edilen bir\u00e7ok say\u0131 probleminin, matemati\u011fin her yerinden geli\u015fmi\u015f y\u00f6ntemler gerektiren \u00e7\u00f6z\u00fcmleri vard\u0131r. \u00d6ne \u00e7\u0131kan bir \u00f6rnek [[Fermat</del>'<del class=\"diffchange diffchange-inline\">n\u0131n son teoremi]]\u2018dir. Bu varsay\u0131m 1637</del>'<del class=\"diffchange diffchange-inline\">de Pierre de Fermat taraf\u0131ndan ifade edildi ancak yaln\u0131zca 1994 y\u0131l\u0131nda Andrew Wiles taraf\u0131ndan</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[cebirsel geometri]], [[kategori teorisi]] ve homolojik cebir</del>'<del class=\"diffchange diffchange-inline\">den \u015fema teorisini i\u00e7eren ara\u00e7lar kullan\u0131larak kan\u0131tland\u0131.<ref></del>{{<del class=\"diffchange diffchange-inline\">Akademik dergi kayna\u011f\u0131</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |ba\u015fl\u0131k</del>=<del class=\"diffchange diffchange-inline\">From Fermat to Wiles: Fermat's Last Theorem Becomes a Theorem</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |ad=Israel |soyad\u0131=Kleiner |yazarba\u011f\u0131=Israel Kleiner </del>(<del class=\"diffchange diffchange-inline\">matematik\u00e7i</del>)</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |dergi=Elemente der Mathematik</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |cilt=55 |sayfalar=19-37|tarih=\u015eubat 2000</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |doi=10</del>.<del class=\"diffchange diffchange-inline\">1007/PL00000079</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| s2cid=53319514 }}</ref></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Ba\u015fka bir \u00f6rnek</del>, <del class=\"diffchange diffchange-inline\">2</del>'<del class=\"diffchange diffchange-inline\">den b\u00fcy\u00fck her \u00e7ift tam say\u0131n\u0131n iki [[asal say\u0131]]</del>'<del class=\"diffchange diffchange-inline\">n\u0131n toplam\u0131 oldu\u011funu \u00f6ne s\u00fcren [[Goldbach hipotezi]]</del>'<del class=\"diffchange diffchange-inline\">dir. 1742</del>'<del class=\"diffchange diffchange-inline\">de </del>[[<del class=\"diffchange diffchange-inline\">Christian Goldbach</del>]] taraf\u0131ndan <del class=\"diffchange diffchange-inline\">ifade edilen</del>, <del class=\"diffchange diffchange-inline\">b\u00fcy\u00fck \u00e7abalara ra\u011fmen bug\u00fcne kadar kan\u0131tlanmam\u0131\u015ft\u0131r</del>.<del class=\"diffchange diffchange-inline\"><ref>{{Kitap kayna\u011f\u0131 |ba\u015fl\u0131k=The Goldbach Conjecture |sayfalar=1-18|ad=Yuan |soyad\u0131=Wang |yazarba\u011f\u0131=Wang Yuan (matematik\u00e7i) |yay\u0131nc\u0131=</del>[[<del class=\"diffchange diffchange-inline\">World Scientific</del>]] <del class=\"diffchange diffchange-inline\">|y\u0131l=2002 |bas\u0131m=revised| isbn=9789812776600 |cilt=4 |seri=Series in pure mathematics | url=https://books</del>.<del class=\"diffchange diffchange-inline\">google.com/books?id=VAY9nTreXkcC&pg=PA1 |eri\u015fimtarihi=18 Aral\u0131k 2022 | ar\u015fivurl=https://web.archive.org/web/20221218075532/https://books.google.com/books?id=VAY9nTreXkcC&pg=PA1 | ar\u015fivtarihi=18 Aral\u0131k 2022 | \u00f6l\u00fcurl=hay\u0131r }}</ref></del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">600'lerde, Hindistan'da negatif say\u0131lar, bor\u00e7 miktarlar\u0131n\u0131 ifade etme amac\u0131yla kullan\u0131lmaya ba\u015flanm\u0131\u015ft\u0131r. Diophantus'un daha \u00f6nceki bahsi</ins>, <ins class=\"diffchange diffchange-inline\">628 y\u0131l\u0131nda </ins>''<ins class=\"diffchange diffchange-inline\">Br\u0101hmasphu\u1e6dasiddh\u0101nta</ins>'' <ins class=\"diffchange diffchange-inline\">eseriyle </ins>[[<ins class=\"diffchange diffchange-inline\">Brahmagupta</ins>]] taraf\u0131ndan <ins class=\"diffchange diffchange-inline\">daha detayl\u0131 bir \u015fekilde ele al\u0131nm\u0131\u015ft\u0131r. Brahmagupta, g\u00fcn\u00fcm\u00fczde de kullan\u0131lan genel ikinci dereceden denklem form\u00fcl\u00fcn\u00fcn \u00fcretimi i\u00e7in negatif say\u0131lar\u0131 kullanm\u0131\u015ft\u0131r. Ancak</ins>, <ins class=\"diffchange diffchange-inline\">12</ins>. <ins class=\"diffchange diffchange-inline\">y\u00fczy\u0131lda Hindistan'da </ins>[[<ins class=\"diffchange diffchange-inline\">II. Bh\u0101skara|Bhaskara</ins>]]<ins class=\"diffchange diffchange-inline\">, ikinci dereceden denklemler i\u00e7in negatif k\u00f6kler sunmu\u015f, fakat negatif de\u011ferin \"bu durumda dikkate al\u0131nmamas\u0131 gerekti\u011fini, \u00e7\u00fcnk\u00fc yetersiz oldu\u011funu; negatif k\u00f6klerin kabul g\u00f6rmedi\u011fini\" ifade etmi\u015ftir</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Say\u0131 teorisi</del>, <del class=\"diffchange diffchange-inline\">analitik </del>say\u0131 teorisi, [[<del class=\"diffchange diffchange-inline\">cebirsel </del>say\u0131 <del class=\"diffchange diffchange-inline\">teorisi</del>]], <del class=\"diffchange diffchange-inline\">say\u0131lar\u0131n geometrisi </del>(<del class=\"diffchange diffchange-inline\">y\u00f6ntem y\u00f6nelimli</del>), [[<del class=\"diffchange diffchange-inline\">Diyofantus denklemi</del>|<del class=\"diffchange diffchange-inline\">diophantine denklem</del>]]<del class=\"diffchange diffchange-inline\">leri </del>ve <del class=\"diffchange diffchange-inline\">a\u015fk\u0131nl\u0131k teorisi dahil olmak </del>\u00fczere <del class=\"diffchange diffchange-inline\">bir\u00e7ok alt alan\u0131 i\u00e7erir</del>.<del class=\"diffchange diffchange-inline\"><ref name=MSC></del>{{<del class=\"diffchange diffchange-inline\">Web kayna\u011f\u0131</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">17. y\u00fczy\u0131la dek Avrupa'daki matematik\u00e7iler genellikle negatif say\u0131lar konseptine kar\u015f\u0131 \u00e7\u0131km\u0131\u015flard\u0131r; ancak [[Fibonacci]], bu say\u0131lar\u0131n bor\u00e7lar olarak yorumlanabilece\u011fi finansal sorunlarda negatif \u00e7\u00f6z\u00fcmlere yer vermi\u015ftir ([[Liber Abaci]], 13. b\u00f6l\u00fcm, 1202) ve sonraki \u00e7al\u0131\u015fmalar\u0131nda zararlar ba\u011flam\u0131nda da bunu s\u00fcrd\u00fcrm\u00fc\u015ft\u00fcr (''Flos'''ta). [[Ren\u00e9 Descartes]], cebirsel polinomlarda kar\u015f\u0131la\u015ft\u0131\u011f\u0131 negatif k\u00f6kleri \"yanl\u0131\u015f k\u00f6kler\" olarak nitelendirmi\u015f, fakat zamanla ger\u00e7ek k\u00f6klerle yanl\u0131\u015f k\u00f6kler aras\u0131nda bir yer de\u011fi\u015ftirme y\u00f6ntemi geli\u015ftirmi\u015ftir. Bu d\u00f6nemde \u00c7inliler, pozitif say\u0131n\u0131n kar\u015f\u0131l\u0131k gelen rakam\u0131n\u0131n en sa\u011fdaki s\u0131f\u0131r olmayan basama\u011f\u0131n\u0131n \u00fczerine \u00e7apraz bir \u00e7izgi \u00e7ekerek negatif say\u0131lar\u0131 g\u00f6stermekteydi.{{r|Smith_1958}} Negatif say\u0131lar\u0131n bir Avrupa \u00e7al\u0131\u015fmas\u0131nda kullan\u0131m\u0131na ilk rastlanan \u00f6rnek, 15. y\u00fczy\u0131lda [[Nicolas Chuquet]] taraf\u0131ndan ger\u00e7ekle\u015ftirilmi\u015ftir. Chuquet, bu say\u0131lar\u0131 [[\u00fcs]]ler olarak kullanm\u0131\u015f, ancak onlara \"abs\u00fcrt say\u0131lar\" demi\u015ftir.</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> </del>|<del class=\"diffchange diffchange-inline\">ba\u015fl\u0131k=MSC2020-Mathematics Subject Classification System</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | website=zbMath</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">18. y\u00fczy\u0131la dek matematiksel pratiklerde, denklemlerden elde edilen negatif sonu\u00e7lar\u0131n anlams\u0131z oldu\u011fu kabul\u00fcyle bu t\u00fcr sonu\u00e7lar\u0131n dikkate al\u0131nmamas\u0131 genel bir yakla\u015f\u0131md\u0131.</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> </del>|<del class=\"diffchange diffchange-inline\">yay\u0131nc\u0131=Associate Editors of Mathematical Reviews and zbMATH</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> </del>| <del class=\"diffchange diffchange-inline\">url=https</del>://<del class=\"diffchange diffchange-inline\">zbmath</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">static</del>/<del class=\"diffchange diffchange-inline\">msc2020</del>.<del class=\"diffchange diffchange-inline\">pdf</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Rasyonel say\u0131lar ===</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |eri\u015fimtarihi</del>=<del class=\"diffchange diffchange-inline\">26 Kas\u0131m 2022</del>| <del class=\"diffchange diffchange-inline\">ar\u015fivurl</del>=https://web.archive.org/web/<del class=\"diffchange diffchange-inline\">20200731133802</del>/https://<del class=\"diffchange diffchange-inline\">zbmath</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">static/msc2020.pdf</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> </del>| <del class=\"diffchange diffchange-inline\">ar\u015fivtarihi</del>=<del class=\"diffchange diffchange-inline\">31 </del>Temmuz <del class=\"diffchange diffchange-inline\">2020</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Kesirli say\u0131 kavram\u0131n\u0131n [[Tarih \u00f6ncesi|tarih\u00f6ncesi d\u00f6nemler]]e uzand\u0131\u011f\u0131 d\u00fc\u015f\u00fcn\u00fclmektedir. [[Antik M\u0131s\u0131r]] uygarl\u0131\u011f\u0131, [[Rhind Papir\u00fcs\u00fc|Rhind Matematik Papir\u00fcs\u00fc]] ve [[Kahun Papir\u00fcs\u00fc]] gibi matematiksel dok\u00fcmanlar\u0131nda rasyonel say\u0131lar i\u00e7in \u00f6zel bir [[M\u0131s\u0131r kesri]] notasyonu geli\u015ftirmi\u015ftir. Antik Yunan ve Hint matematik\u00e7iler</ins>, <ins class=\"diffchange diffchange-inline\">[[</ins>say\u0131 teorisi<ins class=\"diffchange diffchange-inline\">]]nin genel incelemesi \u00e7er\u00e7evesinde, rasyonel say\u0131lar teorisine dair \u00e7al\u0131\u015fmalar yapm\u0131\u015flard\u0131r.{{r|Khan_Academy_2022}} Bu \u00e7al\u0131\u015fmalar aras\u0131nda en me\u015fhuru, M.\u00d6. 300 y\u0131llar\u0131na tarihlenen [[\u00d6klid'in Elementleri|\u00d6klid'in ''Elementleri'']] eseridir. Hint literat\u00fcr\u00fcnde ise</ins>, <ins class=\"diffchange diffchange-inline\">matematiksel \u00e7al\u0131\u015fmalar\u0131n genel bir par\u00e7as\u0131 olarak say\u0131 teorisini ele alan </ins>[[<ins class=\"diffchange diffchange-inline\">Sthananga Sutra]] \u00f6n plana \u00e7\u0131kmaktad\u0131r.</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | \u00f6l\u00fcurl=hay\u0131r</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> </del>}}</ref></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Onlu </ins>say\u0131 <ins class=\"diffchange diffchange-inline\">sistemi|Ondal\u0131k kesir]]lerin kavram\u0131, ondal\u0131k basamak g\u00f6sterimiyle s\u0131k\u0131 bir ba\u011flant\u0131ya sahiptir ve bu iki kavram\u0131n paralel olarak geli\u015fti\u011fi d\u00fc\u015f\u00fcn\u00fclmektedir. \u00d6rne\u011fin, Jain matemati\u011fine ait [[sutra]]larda [[pi say\u0131s\u0131]]n\u0131n veya [[Karek\u00f6k 2|2'nin kare k\u00f6k\u00fc</ins>]]<ins class=\"diffchange diffchange-inline\">n\u00fcn ondal\u0131k kesir yakla\u015f\u0131klar\u0131n\u0131n hesaplamalar\u0131 s\u0131k\u00e7a yer almaktad\u0131r. Ayr\u0131ca</ins>, <ins class=\"diffchange diffchange-inline\">Babil matematik metinlerinde altm\u0131\u015fl\u0131k sistem </ins>(<ins class=\"diffchange diffchange-inline\">taban 60</ins>) <ins class=\"diffchange diffchange-inline\">kullan\u0131larak kesirler yayg\u0131n olarak i\u015flenmi\u015ftir.</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>:<del class=\"diffchange diffchange-inline\">{</del>| <del class=\"diffchange diffchange-inline\">style=</del>\"<del class=\"diffchange diffchange-inline\">border</del>:<del class=\"diffchange diffchange-inline\">1px solid #ddd</del>; <del class=\"diffchange diffchange-inline\">text</del>-<del class=\"diffchange diffchange-inline\">align:center</del>; <del class=\"diffchange diffchange-inline\">margin</del>: <del class=\"diffchange diffchange-inline\">auto;</del>\" <del class=\"diffchange diffchange-inline\">cellspacing=</del>\"<del class=\"diffchange diffchange-inline\">20</del>\"</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| </del><<del class=\"diffchange diffchange-inline\">math</del>><del class=\"diffchange diffchange-inline\">0</del>, <del class=\"diffchange diffchange-inline\">1</del>, <del class=\"diffchange diffchange-inline\">2</del>, <del class=\"diffchange diffchange-inline\">3</del>,<del class=\"diffchange diffchange-inline\">4 </del>...<del class=\"diffchange diffchange-inline\">\\,\\!</del></<del class=\"diffchange diffchange-inline\">math</del>> || <del class=\"diffchange diffchange-inline\"><math>-2</del>, <del class=\"diffchange diffchange-inline\">-1</del>, <del class=\"diffchange diffchange-inline\">0</del>, <del class=\"diffchange diffchange-inline\">1</del>, <del class=\"diffchange diffchange-inline\">2\\</del>,\\<del class=\"diffchange diffchange-inline\">!</del></math> || <math> -2<del class=\"diffchange diffchange-inline\">, </del>\\<del class=\"diffchange diffchange-inline\">frac</del>{<del class=\"diffchange diffchange-inline\">2</del>}{<del class=\"diffchange diffchange-inline\">3</del>}<del class=\"diffchange diffchange-inline\">, </del>1<del class=\"diffchange diffchange-inline\">.21\\,\\!</del></math> <del class=\"diffchange diffchange-inline\">|| </del><math>\\sqrt{<del class=\"diffchange diffchange-inline\">2</del>}<del class=\"diffchange diffchange-inline\">,</del>\\<del class=\"diffchange diffchange-inline\">pi</del>\\,<del class=\"diffchange diffchange-inline\">\\!</del></math> <del class=\"diffchange diffchange-inline\">||</del><math><del class=\"diffchange diffchange-inline\">-e, </del>\\sqrt{<del class=\"diffchange diffchange-inline\">2</del>}<del class=\"diffchange diffchange-inline\">, 3, </del>\\<del class=\"diffchange diffchange-inline\">pi</del>\\,\\<del class=\"diffchange diffchange-inline\">!</del></math> <del class=\"diffchange diffchange-inline\">|| </del><math><del class=\"diffchange diffchange-inline\">2, i, -2</del>+<del class=\"diffchange diffchange-inline\">3i, 2e^{</del>i\\<del class=\"diffchange diffchange-inline\">frac{4</del>\\<del class=\"diffchange diffchange-inline\">pi}</del>{<del class=\"diffchange diffchange-inline\">3}</del>}\\<del class=\"diffchange diffchange-inline\">,</del>\\<del class=\"diffchange diffchange-inline\">!</del></math><del class=\"diffchange diffchange-inline\">|| </del><math>a+bi+<del class=\"diffchange diffchange-inline\">cj</del>+<del class=\"diffchange diffchange-inline\">dk\\,\\</del>!<<del class=\"diffchange diffchange-inline\">/</del>math><del class=\"diffchange diffchange-inline\">||</del><math>2,3,5,<del class=\"diffchange diffchange-inline\">7\\</del>,\\<del class=\"diffchange diffchange-inline\">!</del></math><del class=\"diffchange diffchange-inline\">||</del><math><del class=\"diffchange diffchange-inline\">e,</del>\\<del class=\"diffchange diffchange-inline\">pi\\,\\!</del></math></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== \u0130rrasyonel say\u0131lar ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u0130rrasyonel say\u0131lar konseptinin kullan\u0131ld\u0131\u011f\u0131na dair kaydedilmi\u015f en eski \u00f6rnek, M.\u00d6. 800 ile 500 y\u0131llar\u0131 aras\u0131nda kaleme al\u0131nan Hindistan'a ait [[Sulba Sutralar\u0131]]'nda yer almaktad\u0131r.{{r|Selin_2020}} \u0130rrasyonel say\u0131lar\u0131n varolu\u015funa dair ilk ispatlar, genel kabul g\u00f6rm\u00fc\u015f olarak [[Pisagor]]'a ve \u00f6zellikle [[Pisagorculuk|Pisagorcu]] [[Hippasus|Metapontumlu Hippasus]]'a atfedilmektedir. Hippasus</ins>, [[<ins class=\"diffchange diffchange-inline\">Karek\u00f6k 2</ins>|<ins class=\"diffchange diffchange-inline\">2'nin karek\u00f6k\u00fc</ins>]]<ins class=\"diffchange diffchange-inline\">n\u00fcn irrasyonelli\u011fini kan\u0131tlayan bir \u00e7al\u0131\u015fma ger\u00e7ekle\u015ftirmi\u015ftir, bu \u00e7al\u0131\u015fman\u0131n b\u00fcy\u00fck olas\u0131l\u0131kla geometrik y\u00f6ntemlerle yap\u0131ld\u0131\u011f\u0131 d\u00fc\u015f\u00fcn\u00fclmektedir. Rivayete g\u00f6re, Hippasus 2'nin karek\u00f6k\u00fcn\u00fc bir kesir olarak temsil etme \u00e7abas\u0131 i\u00e7indeyken irrasyonel say\u0131lar\u0131 bulmu\u015ftur. Ancak Pisagor, say\u0131lar\u0131n kesinli\u011fine olan inanc\u0131 nedeniyle irrasyonel say\u0131lar\u0131 kabul edememi\u015ftir. Onlar\u0131n varl\u0131\u011f\u0131n\u0131 mant\u0131ksal olarak \u00e7\u00fcr\u00fctememi\u015f olmas\u0131na ra\u011fmen irrasyonel say\u0131lar\u0131 kabullenememi\u015f </ins>ve <ins class=\"diffchange diffchange-inline\">bu nedenle, iddia edildi\u011fi </ins>\u00fczere<ins class=\"diffchange diffchange-inline\">, bu rahats\u0131z edici bilginin yay\u0131lmas\u0131n\u0131 \u00f6nlemek amac\u0131yla Hippasus'u bo\u011farak idam ettirdi\u011fi s\u0131k\u00e7a ileri s\u00fcr\u00fclm\u00fc\u015ft\u00fcr</ins>.{{<ins class=\"diffchange diffchange-inline\">r</ins>|<ins class=\"diffchange diffchange-inline\">Frischer_1984}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">16. y\u00fczy\u0131l, [[Negatif say\u0131</ins>|<ins class=\"diffchange diffchange-inline\">negatif]] tam say\u0131lar ve [[kesir]]li de\u011ferlerin Avrupa matematik toplulu\u011fu taraf\u0131ndan sonunda benimsendi\u011fi bir d\u00f6nemi i\u015faret etmektedir. 17. y\u00fczy\u0131la gelindi\u011finde, ondal\u0131k kesirlerin modern notasyonu matematik\u00e7iler aras\u0131nda yayg\u0131n bir \u015fekilde kullan\u0131lmaya ba\u015flanm\u0131\u015ft\u0131r. Ne var ki, irrasyonel say\u0131lar\u0131n cebirsel ve a\u015fk\u0131nsal bile\u015fenlere ayr\u0131lmas\u0131 ve bu say\u0131lar\u0131n bilimsel olarak incelenmesi 19. y\u00fczy\u0131la dek ger\u00e7ekle\u015fmemi\u015ftir; bu alan, [[\u00d6klid]] d\u00f6neminden itibaren b\u00fcy\u00fck \u00f6l\u00e7\u00fcde at\u0131l kalm\u0131\u015ft\u0131r. 1872 y\u0131l\u0131nda, [[Karl Weierstrass]], [[Eduard Heine]],<ref>Eduard Heine, [[doi:10.1515/crll.1872.74.172</ins>|<ins class=\"diffchange diffchange-inline\">\"Die Elemente der Functionenlehre\"]], ''[Crelle's] Journal f\u00fcr die reine und angewandte Mathematik'', No. 74 (1872)</ins>: <ins class=\"diffchange diffchange-inline\">172\u2013188.<</ins>/<ins class=\"diffchange diffchange-inline\">ref> [[Georg Cantor]]<ref>Georg Cantor, [[doi:10.1007</ins>/<ins class=\"diffchange diffchange-inline\">BF01446819|\"Ueber unendliche, lineare Punktmannichfaltigkeiten\", pt</ins>. <ins class=\"diffchange diffchange-inline\">5]], ''Mathematische Annalen'', 21, 4 (1883\u201112): 545\u2013591.</ref> ve [[Richard Dedekind]]<ref>Richard Dedekind, ''[https:</ins>//<ins class=\"diffchange diffchange-inline\">books</ins>.<ins class=\"diffchange diffchange-inline\">google.com/books?id</ins>=<ins class=\"diffchange diffchange-inline\">n-43AAAAMAAJ Stetigkeit & irrationale Zahlen] {{Webar\u015fiv</ins>|<ins class=\"diffchange diffchange-inline\">url</ins>=https://web.archive.org/web/<ins class=\"diffchange diffchange-inline\">20210709184745</ins>/https://<ins class=\"diffchange diffchange-inline\">books</ins>.<ins class=\"diffchange diffchange-inline\">google.ca</ins>/<ins class=\"diffchange diffchange-inline\">books?id=n-43AAAAMAAJ </ins>|<ins class=\"diffchange diffchange-inline\">tarih</ins>=<ins class=\"diffchange diffchange-inline\">9 </ins>Temmuz <ins class=\"diffchange diffchange-inline\">2021 </ins>}}<ins class=\"diffchange diffchange-inline\">'' (Braunschweig: Friedrich Vieweg & Sohn, 1872). Subsequently published in: ''\u2014\u2014\u2014, Gesammelte mathematische Werke'', ed. Robert Fricke, Emmy Noether & \u00d6ystein Ore (Braunschweig: Friedrich Vieweg & Sohn, 1932), vol. 3, pp. 315\u2013334.</ins></ref> <ins class=\"diffchange diffchange-inline\">gibi matematik\u00e7ilerin teorilerinin yay\u0131mlanmas\u0131yla, irrasyonel say\u0131lar \u00fczerine bilimsel \u00e7al\u0131\u015fmalar yeniden canlanm\u0131\u015ft\u0131r. [[Charles M\u00e9ray]], 1869 y\u0131l\u0131nda Heine ile benzer bir ba\u015flang\u0131\u00e7 noktas\u0131ndan hareket etmi\u015f olmas\u0131na ra\u011fmen, bu teori genellikle 1872 y\u0131l\u0131na atfedilmektedir. Weierstrass'\u0131n metodolojisi, [[Salvatore Pincherle]] taraf\u0131ndan 1880 y\u0131l\u0131nda tam anlam\u0131yla ortaya konulmu\u015f, Dedekind'in yakla\u015f\u0131m\u0131 ise yazar\u0131n sonraki \u00e7al\u0131\u015fmalar\u0131 ve [[Paul Tannery]]'nin deste\u011fiyle daha da \u00f6nem kazanm\u0131\u015ft\u0131r. Weierstrass, Cantor ve Heine, teorilerini sonsuz serilere dayand\u0131r\u0131rken, Dedekind, ger\u00e7ek say\u0131lar sisteminde, rasyonel say\u0131lar\u0131 belirli \u00f6zelliklere g\u00f6re iki gruba ay\u0131ran bir kesit (Dedekind kesiti) kavram\u0131 \u00fczerine kurmu\u015ftur. Bu alandaki \u00e7al\u0131\u015fmalar, Weierstrass, [[Leopold Kronecker|Kronecker]],<ref>L. Kronecker, [[doi</ins>:<ins class=\"diffchange diffchange-inline\">10.1515/crll.1887.101.337</ins>|\"<ins class=\"diffchange diffchange-inline\">Ueber den Zahlbegriff\"]], ''[Crelle's] Journal f\u00fcr die reine und angewandte Mathematik'', No. 101 (1887)</ins>: <ins class=\"diffchange diffchange-inline\">337\u2013355.</ref> ve M\u00e9ray gibi matematik\u00e7ilerin katk\u0131lar\u0131yla daha da geli\u015ftirilmi\u015ftir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Be\u015finci derece ve \u00fcst\u00fc denklemlerin k\u00f6klerinin aranmas\u0131, matematikte \u00f6nemli bir ilerlemeyi temsil etmektedir</ins>; <ins class=\"diffchange diffchange-inline\">[[Abel teoremi|Abel</ins>-<ins class=\"diffchange diffchange-inline\">Ruffini teoremi]] (Ruffini 1799, Abel 1824), bu t\u00fcr denklemlerin [[k\u00f6kalt\u0131]] (sadece aritmetik i\u015flemler ve k\u00f6kler i\u00e7eren form\u00fcller) arac\u0131l\u0131\u011f\u0131yla \u00e7\u00f6z\u00fclemedi\u011fini ortaya koymu\u015ftur. Dolay\u0131s\u0131yla, polinom denklemlerine ait t\u00fcm \u00e7\u00f6z\u00fcmleri kapsayan geni\u015f [[cebirsel say\u0131lar]] k\u00fcmesinin dikkate al\u0131nmas\u0131 zorunlu hale gelmi\u015ftir. [[Galois]] (1832), polinom denklemleri ile grup teorisini ba\u011fda\u015ft\u0131rarak Galois teorisinin temellerini atm\u0131\u015f ve bu alanda yeni bir disiplin yaratm\u0131\u015ft\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[S\u00fcrekli kesirler]], irrasyonel say\u0131lar ile yak\u0131n bir ili\u015fkiye sahip olup Cataldi taraf\u0131ndan 1613 y\u0131l\u0131nda tan\u0131mlanm\u0131\u015ft\u0131r</ins>; <ins class=\"diffchange diffchange-inline\">[[Euler]]'in<ref>Leonhard Euler, \"Conjectura circa naturam aeris, pro explicandis phaenomenis in atmosphaera observatis\", ''Acta Academiae Scientiarum Imperialis Petropolitanae'', 1779, 1 (1779)</ins>: <ins class=\"diffchange diffchange-inline\">162\u2013187.</ref> \u00e7al\u0131\u015fmalar\u0131yla ve 19. y\u00fczy\u0131l\u0131n ba\u015f\u0131nda [[Joseph Louis Lagrange]]'\u0131n eserleri arac\u0131l\u0131\u011f\u0131yla bilim d\u00fcnyas\u0131nda dikkat \u00e7ekmi\u015ftir. Bu alandaki di\u011fer \u00f6nemli katk\u0131lar, Druckenm\u00fcller (1837), Kunze (1857), Lemke (1870) ve G\u00fcnther (1872) taraf\u0131ndan sa\u011flanm\u0131\u015ft\u0131r. Ramus,<ref>Ramus, \"Determinanternes Anvendelse til at bes temme Loven for de convergerende Br\u00f6ker</ins>\"<ins class=\"diffchange diffchange-inline\">, in: ''Det Kongelige Danske Videnskabernes Selskabs naturvidenskabelige og mathematiske Afhandlinger'' (Kjoebenhavn: 1855), p. 106.</ref> bu konuyu ilk kez [[determinant]]lar ile ili\u015fkilendirerek, Heine,<ref>Eduard Heine, [[doi:10.1515/crll.1859.56.87|</ins>\"<ins class=\"diffchange diffchange-inline\">Einige Eigenschaften der ''Lam\u00e9''schen Funktionen</ins>\"<ins class=\"diffchange diffchange-inline\">]], ''[Crelle's] Journal f\u00fcr die reine und angewandte Mathematik'', No. 56 (Jan. 1859): 87\u201399 at 97.</ref> [[M\u00f6bius]] ve G\u00fcnther'in</ins><<ins class=\"diffchange diffchange-inline\">ref</ins>><ins class=\"diffchange diffchange-inline\">Siegmund G\u00fcnther, ''Darstellung der N\u00e4herungswerthe von Kettenbr\u00fcchen in independenter Form'' (Erlangen: Eduard Besold, 1873); \u2014\u2014\u2014</ins>, <ins class=\"diffchange diffchange-inline\">\"Kettenbruchdeterminanten\"</ins>, <ins class=\"diffchange diffchange-inline\">in: ''Lehrbuch der Determinanten-Theorie: F\u00fcr Studirende'' (Erlangen: Eduard Besold</ins>, <ins class=\"diffchange diffchange-inline\">1875)</ins>, <ins class=\"diffchange diffchange-inline\">c</ins>. <ins class=\"diffchange diffchange-inline\">6, pp</ins>. <ins class=\"diffchange diffchange-inline\">156\u2013186</ins>.</<ins class=\"diffchange diffchange-inline\">ref</ins>> <ins class=\"diffchange diffchange-inline\">sonraki katk\u0131lar\u0131 ile birlikte, ''Kettenbruchdeterminanten'' teorisinin temelini atm\u0131\u015ft\u0131r. Bu teori, s\u00fcrekli kesirlerin matematiksel analizinde \u00f6nemli bir yere sahiptir ve determinantlar arac\u0131l\u0131\u011f\u0131yla bu kesirlerin yap\u0131sal \u00f6zelliklerinin incelenmesine olanak tan\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===A\u015fk\u0131nsal (Transendental) say\u0131lar===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">A\u015fk\u0131nsal (Transendental) say\u0131lar\u0131n ve reel say\u0131lar\u0131n mevcudiyeti, [[Joseph Liouville</ins>|<ins class=\"diffchange diffchange-inline\">Liouville]] taraf\u0131ndan 1844 ve 1851 y\u0131llar\u0131nda ilk defa ispatlanm\u0131\u015ft\u0131r. [[Charles Hermite|Hermite]],, 1873 y\u0131l\u0131nda ger\u00e7ekle\u015ftirdi\u011fi \u00e7al\u0131\u015fmada, ''e'' say\u0131s\u0131n\u0131n a\u015fk\u0131nsal nitelikte oldu\u011funu ortaya koymu\u015ftur ve [[Ferdinand von Lindemann</ins>|<ins class=\"diffchange diffchange-inline\">Lindemann]] da 1882 y\u0131l\u0131nda \u03c0 say\u0131s\u0131n\u0131n a\u015fk\u0131nsal oldu\u011funu kan\u0131tlam\u0131\u015ft\u0131r. Cantor ise, [[reel say\u0131lar]] k\u00fcmesinin say\u0131lamaz derecede sonsuz oldu\u011funu, fakat [[cebirsel say\u0131lar]] k\u00fcmesinin say\u0131labilir derecede sonsuz oldu\u011funu g\u00f6stererek, say\u0131lamaz derecede sonsuz miktarda a\u015fk\u0131nsal say\u0131n\u0131n var oldu\u011funu ispatlam\u0131\u015ft\u0131r. Bu bulgular, matematikte a\u015fk\u0131nsal say\u0131lar ve reel say\u0131lar teorisinin temel ta\u015flar\u0131n\u0131 olu\u015fturmaktad\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Sonsuz ve Sonsuzk\u00fc\u00e7\u00fckler===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Matematiksel [[sonsuzluk]] anlay\u0131\u015f\u0131n\u0131n en antik \u00f6rne\u011fi, [[Yajur Veda]] gibi eski bir Hint yaz\u0131t\u0131nda bulunmaktad\u0131r. Bu metinde, \"E\u011fer sonsuzluktan bir k\u0131sm\u0131 \u00e7\u0131kart\u0131rsan\u0131z ya da sonsuzlu\u011fa bir k\u0131sm\u0131 eklerseniz</ins>, <ins class=\"diffchange diffchange-inline\">geriye kalan yine de sonsuz olacakt\u0131r.\" ifadesi yer almaktad\u0131r. Sonsuzluk</ins>, <ins class=\"diffchange diffchange-inline\">M.\u00d6. 400 y\u0131llar\u0131nda [[Jain]] matematik\u00e7ileri aras\u0131nda yo\u011fun bir \u015fekilde felsefi bir tart\u0131\u015fma konusu olmu\u015ftur. Bu matematik\u00e7iler</ins>, <ins class=\"diffchange diffchange-inline\">sonsuzlu\u011fun be\u015f farkl\u0131 t\u00fcr\u00fcn\u00fc tan\u0131mlam\u0131\u015flard\u0131r: tek ve iki y\u00f6nde sonsuz</ins>, <ins class=\"diffchange diffchange-inline\">alansal olarak sonsuz</ins>, <ins class=\"diffchange diffchange-inline\">her y\u00f6nden sonsuz ve s\u00fcrekli olarak sonsuz. Sonsuz bir niceli\u011fi ifade etmek i\u00e7in s\u0131kl\u0131kla <math></ins>\\<ins class=\"diffchange diffchange-inline\">text{\u221e}</ins></math> <ins class=\"diffchange diffchange-inline\">sembol\u00fc kullan\u0131lmaktad\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Aristo]], Bat\u0131 matemati\u011finin geleneksel sonsuzluk kavram\u0131n\u0131 tan\u0131mlam\u0131\u015ft\u0131r. [[Ger\u00e7ek sonsuzluk]] ile [[potansiyel sonsuzluk]] aras\u0131nda bir ayr\u0131m yapm\u0131\u015f ve genel olarak sadece sonuncusunun ger\u00e7ek bir de\u011fere sahip oldu\u011fu kabul edilmi\u015ftir. [[Galileo Galilei]]'nin ''[[Two New Sciences]]'' adl\u0131 \u00e7al\u0131\u015fmas\u0131, sonsuz k\u00fcmeler aras\u0131nda [[Birebir \u00f6rten fonksiyon|birbirine tekab\u00fcl eden e\u015flemelerin]] fikrini ele alm\u0131\u015ft\u0131r. Ancak, teorideki \u00f6nemli bir sonraki ilerleme [[Georg Cantor]] taraf\u0131ndan ger\u00e7ekle\u015ftirilmi\u015ftir. Cantor, 1895 y\u0131l\u0131nda yeni [[K\u00fcmeler teorisi|k\u00fcme teorisini]] konu alan bir eser yay\u0131mlam\u0131\u015f, bu eserinde transfinite say\u0131lar\u0131n\u0131 tan\u0131tm\u0131\u015f ve [[s\u00fcreklilik hipotezi]]ni form\u00fcle etmi\u015ftir. Bu \u00e7al\u0131\u015fmalar, matematikte sonsuzluk teorisinin geli\u015fiminde \u00f6nemli d\u00f6n\u00fcm noktalar\u0131 olarak kabul edilir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">1960'larda [[Abraham Robinson]], sonsuz b\u00fcy\u00fckl\u00fckteki ve sonsuz k\u00fc\u00e7\u00fckl\u00fckteki say\u0131lar\u0131n, standart olmayan analiz alan\u0131n\u0131 geli\u015ftirecek \u015fekilde kesin olarak tan\u0131mlanabilece\u011fi ve kullan\u0131labilece\u011fi bir y\u00f6ntem ortaya koymu\u015ftur. [[Hiper reel say\u0131lar]] sistemi, [[Isaac Newton]] ve [[Gottfried Leibniz]]'in [[Kalk\u00fcl\u00fcs</ins>|<ins class=\"diffchange diffchange-inline\">sonsuz k\u00fc\u00e7\u00fck hesaplamalar\u0131n\u0131]] icat etmelerinden bu yana matematik\u00e7iler, bilim insanlar\u0131 ve m\u00fchendisler taraf\u0131ndan yayg\u0131n bir \u015fekilde kullan\u0131lan [[sonsuz]] ve [[sonsuz k\u00fc\u00e7\u00fck</ins>|<ins class=\"diffchange diffchange-inline\">sonsuzk\u00fc\u00e7\u00fck]] say\u0131larla ilgili fikirleri kesin bir metodoloji \u00e7er\u00e7evesinde ele al\u0131r. Bu sistem, s\u00f6z konusu kavramlar\u0131n matematikte daha sistematik bir \u015fekilde i\u015flenmesine olanak tan\u0131m\u0131\u015ft\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Projektif geometri]], sonsuzlu\u011fun modern bir geometrik yorumunu sunar ve her bir uzaysal y\u00f6nde \"sonsuzluktaki ideal noktalar\u0131\" tan\u0131mlar. Belirli bir y\u00f6ndeki paralel \u00e7izgi ailelerinin her birinin, ilgili ideal noktaya do\u011fru yak\u0131nsamas\u0131 \u00f6ng\u00f6r\u00fcl\u00fcr. Bu kavram, [[perspektif]] \u00e7izimlerdeki kaybolma noktalar\u0131 fikriyle s\u0131k\u0131 bir \u015fekilde ba\u011flant\u0131l\u0131d\u0131r ve geometrik \u00e7izimlerde derinlik ve uzakl\u0131k hissi olu\u015fturulmas\u0131nda temel bir rol oynar.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Karma\u015f\u0131k say\u0131lar===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Negatif say\u0131lar\u0131n karek\u00f6klerine dair ilk ge\u00e7ici de\u011finme, [[\u0130skenderiyeli Heron]]'nun 1. y\u00fczy\u0131lda ger\u00e7ekle\u015ftirdi\u011fi \u00e7al\u0131\u015fmalarda, ger\u00e7ekle\u015ftirilemez bir kesik [[piramit|piramidin]] hacmini de\u011ferlendirirken g\u00f6r\u00fclm\u00fc\u015ft\u00fcr. Bu konsept, [[Niccol\u00f2 Tartaglia|Niccol\u00f2 Fontana Tartaglia]] ve [[Gerolamo Cardano]] gibi \u0130talyan matematik\u00e7iler taraf\u0131ndan 16. y\u00fczy\u0131lda \u00fc\u00e7\u00fcnc\u00fc ve d\u00f6rd\u00fcnc\u00fc derece polinomlar\u0131n k\u00f6kleri i\u00e7in kapal\u0131 form\u00fcllerin ke\u015ffedilmesiyle daha da \u00f6nem kazand\u0131. Bu form\u00fcllerin, ger\u00e7ek \u00e7\u00f6z\u00fcmlere olan ilgiye ra\u011fmen, bazen negatif say\u0131lar\u0131n karek\u00f6klerinin i\u015flenmesini gerektirdi\u011fi k\u0131sa s\u00fcrede fark edildi.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu durum, negatif say\u0131lar\u0131n o d\u00f6nemde bile sa\u011flam bir temele oturtulmam\u0131\u015f olmas\u0131 nedeniyle daha da rahats\u0131z ediciydi. [[Ren\u00e9 Descartes]]'\u0131n 1637'de bu nicelikler i\u00e7in \"imajiner\" terimi t\u00fcretti\u011finde, bunu k\u00fc\u00e7\u00fcmseyici bir niyetle yapm\u0131\u015ft\u0131. Kar\u0131\u015f\u0131kl\u0131\u011fa neden olan bir di\u011fer fakt\u00f6r, \u015fu denklemin</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:</ins><math><ins class=\"diffchange diffchange-inline\">\\left ( \\sqrt{</ins>-<ins class=\"diffchange diffchange-inline\">1}\\right )^</ins>2 <ins class=\"diffchange diffchange-inline\">=</ins>\\<ins class=\"diffchange diffchange-inline\">sqrt</ins>{<ins class=\"diffchange diffchange-inline\">-1</ins>}<ins class=\"diffchange diffchange-inline\">\\sqrt</ins>{<ins class=\"diffchange diffchange-inline\">-1</ins>}<ins class=\"diffchange diffchange-inline\">=-</ins>1</math></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">cebirsel \u00f6zde\u015flikle keyfi bir \u015fekilde \u00e7eli\u015fkili g\u00f6r\u00fcnmesiydi</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:</ins><math>\\sqrt{<ins class=\"diffchange diffchange-inline\">a</ins>}\\<ins class=\"diffchange diffchange-inline\">sqrt{b}=</ins>\\<ins class=\"diffchange diffchange-inline\">sqrt{ab}</ins>,</math></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">bu, pozitif ger\u00e7ek say\u0131lar ''a'' ve ''b'' i\u00e7in ge\u00e7erlidir ve ''a'', ''b'''den biri pozitif di\u011feri negatifken karma\u015f\u0131k say\u0131 hesaplamalar\u0131nda kullan\u0131lm\u0131\u015ft\u0131r. Bu \u00f6zde\u015fli\u011fin yanl\u0131\u015f kullan\u0131m\u0131 ve ilgili \u00f6zde\u015flik</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:</ins><math><ins class=\"diffchange diffchange-inline\">\\frac{1}{</ins>\\sqrt{<ins class=\"diffchange diffchange-inline\">a}</ins>}<ins class=\"diffchange diffchange-inline\">=</ins>\\<ins class=\"diffchange diffchange-inline\">sqrt{</ins>\\<ins class=\"diffchange diffchange-inline\">frac{1}{a}}</math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">her iki ''a'' ve ''b'' de negatif oldu\u011funda bile [[Euler]]'i zor durumda b\u0131rakm\u0131\u015ft\u0131r. Bu zorluk</ins>, <ins class=\"diffchange diffchange-inline\">Euler'i bu hatadan korumak amac\u0131yla <math></ins>\\<ins class=\"diffchange diffchange-inline\">sqrt{-1}</ins></math> <ins class=\"diffchange diffchange-inline\">yerine \u00f6zel ''i'' sembol\u00fcn\u00fc kullanmaya y\u00f6nlendirir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">18. y\u00fczy\u0131l, [[Abraham de Moivre]] ve [[Leonhard Euler]] gibi matematik\u00e7ilerin \u00f6nemli \u00e7al\u0131\u015fmalar\u0131na sahne oldu. De Moivre'in form\u00fcl\u00fc (1730), a\u015fa\u011f\u0131daki matematiksel ifadeyi ortaya koydu:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:</ins><math><ins class=\"diffchange diffchange-inline\">(\\cos \\theta </ins>+ i\\<ins class=\"diffchange diffchange-inline\">sin </ins>\\<ins class=\"diffchange diffchange-inline\">theta)^</ins>{<ins class=\"diffchange diffchange-inline\">n</ins>} <ins class=\"diffchange diffchange-inline\">= \\cos n \\theta + i</ins>\\<ins class=\"diffchange diffchange-inline\">sin n </ins>\\<ins class=\"diffchange diffchange-inline\">theta </ins></math></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00d6te yandan, karma\u015f\u0131k analiz alan\u0131nda Euler'in form\u00fcl\u00fc (1748), matemati\u011fe \u015fu \u00f6nemli e\u015fitli\u011fi kazand\u0131rd\u0131:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>\\cos \\theta + i\\sin \\theta = e ^{i\\theta }. </ins><<ins class=\"diffchange diffchange-inline\">/</ins>math> \u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu form\u00fcller, trigonometri ve karma\u015f\u0131k say\u0131lar teorisindeki temel ili\u015fkileri kurarak, bu alanlarda derinlemesine \u00e7al\u0131\u015fmalara olanak tan\u0131m\u0131\u015ft\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Karma\u015f\u0131k say\u0131lar\u0131n mevcudiyeti, [[Caspar Wessel]]'in 1799 y\u0131l\u0131nda geometrik bir yorumlamayla a\u00e7\u0131klamas\u0131na kadar tam anlam\u0131yla kabul g\u00f6rmemi\u015fti. [[Carl Friedrich Gauss]], bu konsepti birka\u00e7 y\u0131l sonra yeniden ke\u015ffedip pop\u00fclerle\u015ftirdi ve bunun sonucunda karma\u015f\u0131k say\u0131lar teorisi \u00f6nemli \u00f6l\u00e7\u00fcde geni\u015fletildi. Ancak, karma\u015f\u0131k say\u0131lar\u0131n grafiksel olarak temsil edilme fikri, [[John Wallis]]'in 1685 y\u0131l\u0131nda yay\u0131mlanan ''De algebra tractatus'' isimli \u00e7al\u0131\u015fmas\u0131nda zaten mevcuttu.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Gauss, ayn\u0131 y\u0131l i\u00e7erisinde, karma\u015f\u0131k say\u0131lar alan\u0131nda her polinomun bu alan i\u00e7erisinde tam bir \u00e7\u00f6z\u00fcm setine sahip oldu\u011funu ispatlayarak, [[cebirin temel teoremi]]ne dair genel kabul g\u00f6rm\u00fc\u015f ilk kan\u0131t\u0131 ortaya koymu\u015ftur. Gauss, ''</ins>a<ins class=\"diffchange diffchange-inline\">'' ve ''b'' de\u011ferlerinin tam say\u0131lar (g\u00fcn\u00fcm\u00fczde Gauss tam say\u0131lar\u0131 olarak bilinir) veya rasyonel say\u0131lar oldu\u011fu ''a'' </ins>+ <ins class=\"diffchange diffchange-inline\">''</ins>bi<ins class=\"diffchange diffchange-inline\">'' bi\u00e7imindeki karma\u015f\u0131k say\u0131lar\u0131 ele alm\u0131\u015ft\u0131r. Gauss'un \u00f6\u011frencisi [[Gotthold Eisenstein]] ise, ''\u03c9'' de\u011ferinin ''x''<sup>3</sup> \u2212 1 = 0 denkleminin karma\u015f\u0131k bir k\u00f6k\u00fc oldu\u011fu ''a'' </ins>+ <ins class=\"diffchange diffchange-inline\">''b\u03c9'' \u015feklindeki karma\u015f\u0131k say\u0131lar\u0131 incelemi\u015ftir (bu say\u0131lar g\u00fcn\u00fcm\u00fczde Eisenstein tam say\u0131lar\u0131 olarak adland\u0131r\u0131l\u0131r). ''x''<sup>''k''</sup> \u2212 1 = 0 denkleminden t\u00fcretilen birlik k\u00f6kleri i\u00e7in ''k'' de\u011ferinin y\u00fcksek oldu\u011fu durumlar i\u00e7in tan\u0131mlanan di\u011fer karma\u015f\u0131k say\u0131 s\u0131n\u0131flar\u0131 (d\u00f6ng\u00fcsel alanlar olarak adland\u0131r\u0131l\u0131r), karma\u015f\u0131k say\u0131lar alan\u0131ndaki bu geni\u015flemeye katk\u0131da bulunmu\u015ftur. Bu genelleme, b\u00fcy\u00fck \u00f6l\u00e7\u00fcde [[Ernst Kummer]]'a aittir; Kummer, ideal say\u0131lar\u0131 da icat etmi\u015f olup, bu say\u0131lar 1893 y\u0131l\u0131nda [[Felix Klein]] taraf\u0131ndan geometrik nesneler olarak tan\u0131mlanm\u0131\u015ft\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">1850 y\u0131l\u0131nda [[Victor Alexandre Puiseux]], karma\u015f\u0131k say\u0131lar teorisinde \u00f6nemli bir geli\u015fmeye imza atarak kutuplar ile dalga k\u0131r\u0131lma noktalar\u0131 aras\u0131ndaki fark\u0131 belirginle\u015ftirdi ve [[matematiksel tekillik]]lerin temelini olu\u015fturan esas tekillik noktalar\u0131 kavram\u0131n\u0131 ortaya koydu. Bu yakla\u015f\u0131m, geni\u015fletilmi\u015f [[Riemann k\u00fcresi|karma\u015f\u0131k d\u00fczlem kavram\u0131n\u0131n]] temellerinin at\u0131lmas\u0131na \u00f6nayak oldu.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Asal say\u0131lar===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Asal say\u0131lar]], kay\u0131tl\u0131 tarihin her evresinde ara\u015ft\u0131rma konusu olmu\u015ftur. Bunlar, yaln\u0131zca 1 ve kendileri ile b\u00f6l\u00fcnebilme \u00f6zelli\u011fine sahip pozitif tam say\u0131lard\u0131r. \u00d6klid, ''Elementler'' adl\u0131 eserinin bir b\u00f6l\u00fcm\u00fcn\u00fc asal say\u0131lar teorisine adam\u0131\u015ft\u0131r; bu b\u00f6l\u00fcmde, asal say\u0131lar\u0131n sonsuz oldu\u011funu ve [[aritmeti\u011fin temel teoremi]]ni ispatlam\u0131\u015f, ayn\u0131 zamanda iki say\u0131n\u0131n [[Ortak b\u00f6len|en b\u00fcy\u00fck ortak b\u00f6lenini]] bulmak i\u00e7in [[\u00d6klid algoritmas\u0131]]n\u0131 tan\u0131tm\u0131\u015ft\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">M.\u00d6. 240 y\u0131l\u0131nda, [[Eratosthenes]], asal say\u0131lar\u0131 etkin bir \u015fekilde saptamak i\u00e7in [[Eratosten kalburu]] y\u00f6ntemini kullanm\u0131\u015ft\u0131r. Ancak, asal say\u0131lar teorisindeki \u00f6nemli geli\u015fmelerin \u00e7o\u011fu, Avrupa'da [[R\u00f6nesans]] d\u00f6nemi ve sonras\u0131na aittir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">1796 y\u0131l\u0131nda [[Adrien-Marie Legendre]], asal say\u0131lar\u0131n asimptotik da\u011f\u0131l\u0131m\u0131n\u0131 a\u00e7\u0131klayan [[asal say\u0131 teoremi]]ni tahmin etmi\u015ftir. Asal say\u0131lar\u0131n da\u011f\u0131l\u0131m\u0131 ile ilgili di\u011fer \u00f6nemli bulgular aras\u0131nda, Euler'in asal say\u0131lar\u0131n kar\u015f\u0131l\u0131kl\u0131 de\u011ferlerinin toplam\u0131n\u0131n diverjans\u0131n\u0131 ispatlamas\u0131 ve herhangi bir yeterince b\u00fcy\u00fck \u00e7ift say\u0131n\u0131n iki asal say\u0131n\u0131n toplam\u0131 \u015feklinde ifade edilebilece\u011fini \u00f6ne s\u00fcren [[Goldbach hipotezi|Goldbach varsay\u0131m\u0131]] yer almaktad\u0131r. Asal say\u0131lar\u0131n da\u011f\u0131l\u0131m\u0131 ile ilgili bir di\u011fer \u00f6nemli varsay\u0131m ise, [[Bernhard Riemann]] taraf\u0131ndan 1859 y\u0131l\u0131nda form\u00fcle edilen [[Riemann hipotezi]]dir. Asal say\u0131 teoremi, [[Jacques Hadamard]] ve [[Charles de la Vall\u00e9e-Poussin]] taraf\u0131ndan 1896 y\u0131l\u0131nda kan\u0131tlanm\u0131\u015ft\u0131r. Goldbach ve Riemann'\u0131n varsay\u0131mlar\u0131 ise h\u00e2l\u00e2 ne kan\u0131tlanm\u0131\u015f ne de \u00e7\u00fcr\u00fct\u00fclm\u00fc\u015ft\u00fcr.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== S\u0131n\u0131fland\u0131rma ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Say\u0131lar, do\u011fal say\u0131lar ve reel say\u0131lar gibi, 'say\u0131 k\u00fcmeleri' veya 'say\u0131 sistemleri' ad\u0131 verilen matematiksel k\u00fcmeler i\u00e7erisinde s\u0131n\u0131fland\u0131r\u0131labilir. Temel say\u0131 sistemleri a\u015fa\u011f\u0131daki gibidir:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{|class=\"wikitable\" style=\"margin: 1em auto; max-width: 600px; overflow-x: auto\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|</ins>+ <ins class=\"diffchange diffchange-inline\">Temel say\u0131 sistemleri</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>!<math><ins class=\"diffchange diffchange-inline\">\\mathbb{N}</ins><<ins class=\"diffchange diffchange-inline\">/</ins>math></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">![[Do\u011fal say\u0131lar]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| 0, 1, </ins>2, 3<ins class=\"diffchange diffchange-inline\">, 4</ins>, 5, <ins class=\"diffchange diffchange-inline\">... or 1, 2, 3, 4, 5</ins>, <ins class=\"diffchange diffchange-inline\">...<br /></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><math></ins>\\<ins class=\"diffchange diffchange-inline\">mathbb{N}_0</ins></math> <ins class=\"diffchange diffchange-inline\">veya </ins><math>\\<ins class=\"diffchange diffchange-inline\">mathbb{N}_1</ins></math> <ins class=\"diffchange diffchange-inline\">kullan\u0131l\u0131r.</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><div>|-</div></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><div>|-</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| [[Do\u011fal say\u0131lar]]</del><<del class=\"diffchange diffchange-inline\">ref</del>>{<del class=\"diffchange diffchange-inline\">{harvtxt|Hamilton|1988}} {{\u0130ng}</del>}</<del class=\"diffchange diffchange-inline\">ref</del>> <del class=\"diffchange diffchange-inline\">|| </del>[[Tam say\u0131lar]]<del class=\"diffchange diffchange-inline\"><ref name=\"Campbell-1970-p83\">{{Kitap kayna\u011f\u0131 </del>|<del class=\"diffchange diffchange-inline\">yazar=Campbell, Howard E</del>. <del class=\"diffchange diffchange-inline\">|dil=\u0130ngilizce|ba\u015fl\u0131k=The structure of arithmetic |url=https://archive</del>.<del class=\"diffchange diffchange-inline\">org/details/structureofarith00camp |yay\u0131nc\u0131=Appleton-Century-Crofts |y\u0131l=1970 |isbn=</del>0<del class=\"diffchange diffchange-inline\">-390-16895-</del>5 <del class=\"diffchange diffchange-inline\">|sayfa=[https://archive</del>.<del class=\"diffchange diffchange-inline\">org/details/structureofarith00camp/page/83 83]}}</ref> || [[Rasyonel say\u0131lar]]<ref name=\"Rosen\">{{Kitap kayna\u011f\u0131 |soyad\u0131 = Rosen |ad=Kenneth |y\u0131l=2007 |ba\u015fl\u0131k=Discrete Mathematics and its Applications |url = https://archive</del>.<del class=\"diffchange diffchange-inline\">org/details/discretemathemat00rose_164 |dil=\u0130ngilizce|bas\u0131m=6</del>.|<del class=\"diffchange diffchange-inline\">yay\u0131nc\u0131=McGraw-Hill |yer=New York, NY |isbn=978-0-07-288008-3 |sayfalar=[https://archive.org/details/discretemathemat00rose_164/page/n128 105], 158</del>-<del class=\"diffchange diffchange-inline\">160}}</ref>||[[orans\u0131z say\u0131lar|\u0130rrasyonel say\u0131lar]] || [[Reel say\u0131lar]]</del><<del class=\"diffchange diffchange-inline\">ref name=\"pugh\"</del>>{<del class=\"diffchange diffchange-inline\">{Kitap kayna\u011f\u0131|ba\u015fl\u0131k=Real Mathematical Analysis|ad=Charles Chapman|soyad\u0131=Pugh|yer=New York|yay\u0131nc\u0131=Springer|y\u0131l=2002|isbn=0-387-95297-7|dil=\u0130ngilizce|sayfalar=11&ndash;15|url=https://books.google.com/books?id=R_ZetzxFHVwC|eri\u015fimtarihi=17 A\u011fustos 2016|ar\u015fivurl=https://web.archive.org/web/20131114092543/http://books.google.com/books?id=R_ZetzxFHVwC|ar\u015fivtarihi=14 Kas\u0131m 2013|\u00f6l\u00fcurl=hay\u0131r}</del>}</<del class=\"diffchange diffchange-inline\">ref</del>> <del class=\"diffchange diffchange-inline\">|| </del>[[<del class=\"diffchange diffchange-inline\">Karma\u015f\u0131k </del>say\u0131lar]]<del class=\"diffchange diffchange-inline\"><ref>{{Kitap kayna\u011f\u0131 |ba\u015fl\u0131k=Elementary Algebra |yazar=Charles P. McKeague |yay\u0131nc\u0131=Brooks/Cole |isbn=978-0-8400-6421-9 |y\u0131l=2011 |dil=\u0130ngilizce|sayfa=524 |url=https://books.google.com/?id=etTbP0rItQ4C&pg=PA524}}</ref></del>|<del class=\"diffchange diffchange-inline\">|[[D\u00f6rdey]]ler<ref></del>{{<del class=\"diffchange diffchange-inline\">Konferans kayna\u011f\u0131 </del>| <del class=\"diffchange diffchange-inline\">ba\u015fl\u0131k=On Quaternions; or on </del>a <del class=\"diffchange diffchange-inline\">new System of Imaginaries in Algebra (letter to John T. Graves, dated October 17, 1843) </del>| <del class=\"diffchange diffchange-inline\">y\u0131l=1843|dil=\u0130ngilizce</del>}}<del class=\"diffchange diffchange-inline\"></ref><ref>{{Kitap kayna\u011f\u0131 | url=https://books.google.com/?id=DRLpAFZM7uwC&pg=PA385 | ba\u015fl\u0131k=The history of non-euclidean geometry: evolution of the concept of </del>a <del class=\"diffchange diffchange-inline\">geometric space | y\u0131l=1988 | yay\u0131nc\u0131=Springer |dil=\u0130ngilizce| yazar=Boris Abramovich Rozenfel\u02b9d | sayfa=385| isbn=9780387964584 }}</ref><ref>Girard, P. R. </del>''<del class=\"diffchange diffchange-inline\">The quaternion group and modern physics</del>'' <del class=\"diffchange diffchange-inline\">(1984) Eur. J. Phys. vol 5, p. 25&ndash;32. {{\u0130ng}} {{doi</del>|<del class=\"diffchange diffchange-inline\">10.1088/0143</del>-<del class=\"diffchange diffchange-inline\">0807/5/1/007}</del>}</<del class=\"diffchange diffchange-inline\">ref</del>><del class=\"diffchange diffchange-inline\">||</del>[[<del class=\"diffchange diffchange-inline\">Asal </del>say\u0131lar]]<<del class=\"diffchange diffchange-inline\">ref</del>>{<del class=\"diffchange diffchange-inline\">{Kitap kayna\u011f\u0131 | soyad\u01311=Dudley| ad1=Underwood | ba\u015fl\u0131k=Elementary number theory | url=https://archive.org/details/elementarynumber00dudl_0| yay\u0131nc\u0131=W. H. Freeman and Co. |bas\u0131m=2.| isbn=978-0-7167-0076-0 |dil=\u0130ngilizce| y\u0131l=1978}</del>}</<del class=\"diffchange diffchange-inline\">ref</del>><del class=\"diffchange diffchange-inline\">||</del>[[<del class=\"diffchange diffchange-inline\">Matematiksel sabitler|Sabitler</del>]]<del class=\"diffchange diffchange-inline\"><ref name=\"mathworld\">{{Web kayna\u011f\u0131 </del>| <del class=\"diffchange diffchange-inline\">url = http://mathworld.wolfram.com/Constant.html | ba\u015fl\u0131k = Constant | dil = \u0130ngilizce | yay\u0131nc\u0131 = MathWorld | eri\u015fimtarihi = 13 Nisan 2011 | yazar = Weisstein</del>, <del class=\"diffchange diffchange-inline\">Eric W. | ar\u015fivurl = https://web.archive.org/web/20160603022929/http://mathworld.wolfram.com/Constant.html | ar\u015fivtarihi = 3 Haziran 2016 | \u00f6l\u00fcurl = hay\u0131r }}</ref></del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">!</ins><<ins class=\"diffchange diffchange-inline\">math</ins>><ins class=\"diffchange diffchange-inline\">\\mathbb</ins>{<ins class=\"diffchange diffchange-inline\">Z</ins>}</<ins class=\"diffchange diffchange-inline\">math</ins>></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">!</ins>[[Tam say\u0131lar]]</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|..<ins class=\"diffchange diffchange-inline\">., \u22125, \u22124, \u22123, \u22122, \u22121, </ins>0<ins class=\"diffchange diffchange-inline\">, 1, 2, 3, 4, </ins>5<ins class=\"diffchange diffchange-inline\">, </ins>...</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|-</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">!</ins><<ins class=\"diffchange diffchange-inline\">math</ins>><ins class=\"diffchange diffchange-inline\">\\mathbb</ins>{<ins class=\"diffchange diffchange-inline\">Q</ins>}</<ins class=\"diffchange diffchange-inline\">math</ins>></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">!</ins>[[<ins class=\"diffchange diffchange-inline\">Rasyonel </ins>say\u0131lar]]</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|{{<ins class=\"diffchange diffchange-inline\">sfrac</ins>|<ins class=\"diffchange diffchange-inline\">''</ins>a<ins class=\"diffchange diffchange-inline\">''</ins>|<ins class=\"diffchange diffchange-inline\">''b''</ins>}}<ins class=\"diffchange diffchange-inline\">'da ''</ins>a'' <ins class=\"diffchange diffchange-inline\">ve ''b'' tam say\u0131 ve ''b</ins>'' <ins class=\"diffchange diffchange-inline\">\u2260 0</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|-</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">!<math>\\mathbb{R</ins>}</<ins class=\"diffchange diffchange-inline\">math</ins>></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">!</ins>[[<ins class=\"diffchange diffchange-inline\">Reel </ins>say\u0131lar]]</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|Rasyonel say\u0131lardan olu\u015fan bir yak\u0131nsak dizinin limit de\u011feri</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">!</ins><<ins class=\"diffchange diffchange-inline\">math</ins>><ins class=\"diffchange diffchange-inline\">\\mathbb</ins>{<ins class=\"diffchange diffchange-inline\">C</ins>}</<ins class=\"diffchange diffchange-inline\">math</ins>></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">!</ins>[[<ins class=\"diffchange diffchange-inline\">Karma\u015f\u0131k say\u0131lar</ins>]]</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">''a'' + ''bi'' \u015feklinde ifade edilen, burada ''a'' ve ''b'' reel say\u0131lar olup</ins>, <ins class=\"diffchange diffchange-inline\">''i'' ise -1'in formal karek\u00f6k\u00fcn\u00fc temsil eder</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><div>|}</div></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><div>|}</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>:{<del class=\"diffchange diffchange-inline\">| style=\"border</del>:<del class=\"diffchange diffchange-inline\">1px solid #ddd; text-align</del>:center<del class=\"diffchange diffchange-inline\">; margin: auto;\" cellspacing</del>=<del class=\"diffchange diffchange-inline\">\"20\"</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu say\u0131 sistemlerinden her biri, bir sonraki say\u0131 sisteminin alt k\u00fcmesini olu\u015fturur. Dolay\u0131s\u0131yla, bir rasyonel say\u0131n\u0131n ayn\u0131 zamanda bir reel say\u0131 oldu\u011fu ve her reel say\u0131n\u0131n da bir karma\u015f\u0131k say\u0131 oldu\u011fu s\u00f6ylenebilir. Bu durum sembolik olarak \u015fu \u015fekilde g\u00f6sterilebilir</ins>:</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>| <math><del class=\"diffchange diffchange-inline\">a+</del>\\<del class=\"diffchange diffchange-inline\">mathbf</del>{<del class=\"diffchange diffchange-inline\">h</del>}<del class=\"diffchange diffchange-inline\">b</del>\\,\\<del class=\"diffchange diffchange-inline\">!</del></math> || <math>\\<del class=\"diffchange diffchange-inline\">mathbf</del>{<del class=\"diffchange diffchange-inline\">e</del>}<del class=\"diffchange diffchange-inline\">_3^2</del>=1<del class=\"diffchange diffchange-inline\">\\</del>,\\<del class=\"diffchange diffchange-inline\">!</del></math> || <math><del class=\"diffchange diffchange-inline\">z=</del>\\<del class=\"diffchange diffchange-inline\">pm</del>\\<del class=\"diffchange diffchange-inline\">sum_</del>{<del class=\"diffchange diffchange-inline\">i</del>=<del class=\"diffchange diffchange-inline\">k</del>}<del class=\"diffchange diffchange-inline\">^</del>\\<del class=\"diffchange diffchange-inline\">infty a_i </del>\\<del class=\"diffchange diffchange-inline\">cdot p^i</del>\\,\\<del class=\"diffchange diffchange-inline\">!</del></math> <del class=\"diffchange diffchange-inline\">|| </del><math>1+2+3....<del class=\"diffchange diffchange-inline\">n</del>=<del class=\"diffchange diffchange-inline\">n</del>.(<del class=\"diffchange diffchange-inline\">n</del>+<del class=\"diffchange diffchange-inline\">1</del>)/2\\,\\<del class=\"diffchange diffchange-inline\">!</del></math> ||<<del class=\"diffchange diffchange-inline\">big</del>>[[<del class=\"diffchange diffchange-inline\">Pi say\u0131s\u0131|\u03c0</del>]],[[<del class=\"diffchange diffchange-inline\">E </del>say\u0131s\u0131|<del class=\"diffchange diffchange-inline\">e</del>]]<<del class=\"diffchange diffchange-inline\">/big</del>><del class=\"diffchange diffchange-inline\">|| </del><math><del class=\"diffchange diffchange-inline\">6</del>,<del class=\"diffchange diffchange-inline\">28</del>,<del class=\"diffchange diffchange-inline\">496</del>\\,<del class=\"diffchange diffchange-inline\">\\!</del></math>|| <<del class=\"diffchange diffchange-inline\">math</del>><del class=\"diffchange diffchange-inline\">1_2</del>,<del class=\"diffchange diffchange-inline\">10_2\\</del>,<del class=\"diffchange diffchange-inline\">\\!</del></math>||<math>0<del class=\"diffchange diffchange-inline\">\\</del>,\\<del class=\"diffchange diffchange-inline\">!</del></math></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>|<del class=\"diffchange diffchange-inline\">-</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>\\mathbb</ins>{<ins class=\"diffchange diffchange-inline\">N} \\subset \\mathbb{Z} \\subset \\mathbb{Q} \\subset \\mathbb{R} \\subset \\mathbb{C}</math>.</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>| [[<del class=\"diffchange diffchange-inline\">Hiperbolik </del>say\u0131lar]]<del class=\"diffchange diffchange-inline\">|| </del>[[<del class=\"diffchange diffchange-inline\">\u00c7ifte </del>karma\u015f\u0131k say\u0131lar]] || [[<del class=\"diffchange diffchange-inline\">P</del>-<del class=\"diffchange diffchange-inline\">sel </del>say\u0131lar]]<del class=\"diffchange diffchange-inline\">||</del>[[<del class=\"diffchange diffchange-inline\">Ard\u0131\u015f\u0131k </del>say\u0131lar]] || [[<del class=\"diffchange diffchange-inline\">A\u015fk\u0131n say\u0131</del>]] |<del class=\"diffchange diffchange-inline\">| </del>[[<del class=\"diffchange diffchange-inline\">M\u00fckemmel </del>say\u0131]]<del class=\"diffchange diffchange-inline\">||</del>[[<del class=\"diffchange diffchange-inline\">\u0130kili </del>say\u0131lar]]<del class=\"diffchange diffchange-inline\">||</del>[[<del class=\"diffchange diffchange-inline\">0 </del>(say\u0131<del class=\"diffchange diffchange-inline\">)</del>|<del class=\"diffchange diffchange-inline\">S\u0131f\u0131r</del>]]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>|<del class=\"diffchange diffchange-inline\">}</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bir tablo olarak say\u0131lar i\u00e7in \u015f\u00f6yle s\u0131n\u0131fland\u0131rma yap\u0131labilir</ins>:</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>:<ins class=\"diffchange diffchange-inline\"><math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \\scriptstyle\\mathbb{C} \\mbox{\u00a0 \u00a0 Karma\u015f\u0131k}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \\begin{cases} </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \\scriptstyle\\mathbb{R} & \\mbox{Ger\u00e7ek}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \\begin{cases}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \\scriptstyle\\mathbb{Q} & \\mbox{Rasyonel}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \\begin{cases}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \\scriptstyle\\mathbb{Z} & \\mbox{Tam say\u0131lar}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \\begin{cases}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \\scriptstyle\\mathbb{N} & \\mbox{Do\u011fal Say\u0131lar} \\\\</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \\end{cases}\\\\</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 & \\mbox{Oranl\u0131}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \\end{cases}\\\\</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 & \\mbox{\u0130rrasyonel}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 \\end{cases}\\\\jjj</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \u00a0 \u00a0 & \\mbox{Sanal}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 \u00a0 \\end{cases}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"></math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">A\u015fa\u011f\u0131daki diyagramda, say\u0131 k\u00fcmelerine ili\u015fkin daha kapsaml\u0131 bir listeleme yer almaktad\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><center>{{Say\u0131lar\u0131n s\u0131n\u0131fland\u0131rmas\u0131}}</</ins>center<ins class=\"diffchange diffchange-inline\">></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Sayma say\u0131lar ==</ins>=</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Ana</ins>|<ins class=\"diffchange diffchange-inline\">Sayma say\u0131lar\u0131}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Sayma say\u0131lar\u0131]] bo\u015ftan farkl\u0131 bir k\u00fcmenin elemanlar\u0131n\u0131 azl\u0131k veya \u00e7okluk y\u00f6n\u00fcnden nitelemekten ziyade onlar\u0131n i\u00e7indeki eleman miktar\u0131na g\u00f6re verilen bir temsilciler k\u00fcmesi olarak tan\u0131mlan\u0131r. Temsilcilere verilen isme kanonik temsilci denir. Her sayma say\u0131s\u0131 ayn\u0131 zamanda bir kanonik temsilcidir. Sayma say\u0131lar\u0131na s\u0131f\u0131r\u0131n dahil olmamas\u0131n\u0131n sebebi bo\u015f k\u00fcmenin i\u00e7inde temsil edecek bir eleman\u0131n olmamas\u0131d\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><math>\\<ins class=\"diffchange diffchange-inline\">scriptstyle\\mathbb</ins>{<ins class=\"diffchange diffchange-inline\">N</ins>}<ins class=\"diffchange diffchange-inline\">^+ = \\left</ins>\\<ins class=\"diffchange diffchange-inline\">{ 1, 2, 3</ins>, <ins class=\"diffchange diffchange-inline\">... \\right</ins>\\<ins class=\"diffchange diffchange-inline\">} </ins></math></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Do\u011fal say\u0131lar ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Ana|Do\u011fal say\u0131lar}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Dosya:Nat num.svg</ins>|<ins class=\"diffchange diffchange-inline\">k\u00fc\u00e7\u00fckresim</ins>|<ins class=\"diffchange diffchange-inline\">1'den itibaren do\u011fal say\u0131lar]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Do\u011fal say\u0131lar]] 0'dan ba\u015flayarak sonsuza kadar giden say\u0131lard\u0131r. Matematikte ''do\u011fal say\u0131lar k\u00fcmesi'' </ins><math>\\<ins class=\"diffchange diffchange-inline\">scriptstyle\\mathbb N</math> ile g\u00f6sterilir. Do\u011fal say\u0131lar ismi bu say\u0131lar\u0131n do\u011fada g\u00f6r\u00fcp tan\u0131d\u0131\u011f\u0131m\u0131z say\u0131lar oldu\u011fu fikrinden ileri gelmektedir. Do\u011fal say\u0131lar k\u00fcmesi \"0\" ve pozitif t\u00fcm tam say\u0131lar\u0131n oldu\u011fu k\u00fcmedir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><math>\\scriptstyle\\mathbb</ins>{<ins class=\"diffchange diffchange-inline\">N</ins>} = <ins class=\"diffchange diffchange-inline\"> \\{ 0, </ins>1, <ins class=\"diffchange diffchange-inline\">2, 3, 4, 5, 6, 7, ...\u00a0 </ins>\\<ins class=\"diffchange diffchange-inline\">}</ins></math></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">0 say\u0131s\u0131, [[Antik Yunan]] d\u00f6neminde dahi say\u0131 olarak kabul edilmezdi. Ancak 19. y\u00fczy\u0131lda, k\u00fcme teorisyenleri ve di\u011fer matematik\u00e7iler, 0'\u0131 (bo\u015f k\u00fcmenin kardinalitesi, yani 0 eleman, bu nedenle 0 en k\u00fc\u00e7\u00fck kardinal say\u0131 olarak kabul edilir) do\u011fal say\u0131lar k\u00fcmesine dahil etmeye ba\u015flad\u0131lar.<ref></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{MathWorld|ba\u015fl\u0131k=Natural Number</ins>|<ins class=\"diffchange diffchange-inline\">id=NaturalNumber}}</ref>{{r</ins>|<ins class=\"diffchange diffchange-inline\">Merriam-Webster_2019}} G\u00fcn\u00fcm\u00fczde, matematik\u00e7ilerin farkl\u0131 yakla\u015f\u0131mlar\u0131 neticesinde, terim hem 0'\u0131 i\u00e7eren hem de i\u00e7ermeyen say\u0131 k\u00fcmelerini tan\u0131mlamak i\u00e7in kullan\u0131lmaktad\u0131r. T\u00fcm do\u011fal say\u0131lar k\u00fcmesini ifade etmek i\u00e7in kullan\u0131lan matematiksel sembol '''N''' olup, <math>\\mathbb{N}</math> \u015feklinde g\u00f6sterilir ve k\u00fcmenin 0 ile mi yoksa 1 ile mi ba\u015flayaca\u011f\u0131n\u0131 belirtmek amac\u0131yla </ins><math>\\<ins class=\"diffchange diffchange-inline\">mathbb{N}_0</math> veya <math></ins>\\<ins class=\"diffchange diffchange-inline\">mathbb{N}_1</math> \u015feklinde ifade edilir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Onlu say\u0131 sistemi]], g\u00fcn\u00fcm\u00fczde matematiksel i\u015flemler i\u00e7in yayg\u0131n olarak kullan\u0131lan sistem olup, do\u011fal say\u0131lar\u0131n g\u00f6sterimi i\u00e7in on adet say\u0131sal basamak kullan\u0131r: 0, 1, 2, 3, 4, 5, 6, 7, 8 ve 9. [[Taban (aritmetik)|Radiks]] veya taban, bir say\u0131 sisteminin say\u0131lar\u0131 ifade etmek i\u00e7in kulland\u0131\u011f\u0131, s\u0131f\u0131r dahil olmak \u00fczere, benzersiz say\u0131sal basamaklar\u0131n toplam say\u0131s\u0131n\u0131 belirtir (ondal\u0131k sistem i\u00e7in bu de\u011fer 10'dur). Bu onlu taban sistemde, bir do\u011fal say\u0131n\u0131n en sa\u011fdaki basama\u011f\u0131n\u0131n basamak de\u011feri 1 olup, di\u011fer basamaklar\u0131n her birinin basamak de\u011feri, hemen sa\u011f\u0131nda yer alan basama\u011f\u0131n basamak de\u011ferinin on kat\u0131 kadar olur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[K\u00fcmeler teorisi|K\u00fcme teorisi]], modern matemati\u011fin aksiyomatik bir temeli olarak g\u00f6rev yapabilir ve bu \u00e7er\u00e7evede,{</ins>{<ins class=\"diffchange diffchange-inline\">r|Suppes_1972}} do\u011fal say\u0131lar, e\u015fit b\u00fcy\u00fckl\u00fckteki k\u00fcmelerin s\u0131n\u0131fland\u0131r\u0131lmas\u0131 yoluyla ifade edilebilir. Mesela, 3 say\u0131s\u0131, tam olarak \u00fc\u00e7 \u00f6\u011feye sahip olan t\u00fcm k\u00fcmelerin bir s\u0131n\u0131f\u0131 olarak ifade edilebilir. Di\u011fer bir y\u00f6ntem olarak, [[Peano aksiyomlar\u0131|Peano Aritmeti\u011fi]]'nde 3 say\u0131s\u0131, sss0 olarak g\u00f6sterilir; burada 's', \"ard\u0131l\" fonksiyonunu temsil eder (bu ba\u011flamda 3, 0 say\u0131s\u0131n\u0131n \u00fc\u00e7\u00fcnc\u00fc ard\u0131l\u0131 olarak kabul edilir). 3 say\u0131s\u0131n\u0131 formel olarak ifade etmek i\u00e7in bir\u00e7ok farkl\u0131 y\u00f6ntem mevcuttur; tek gereken, belirli bir sembol\u00fc veya sembol dizisini \u00fc\u00e7 defa i\u015faretlemektir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Tam say\u0131lar ==</ins>=</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Ana|Tam say\u0131lar}</ins>}</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Tam say\u0131lar eksi sonsuzdan art\u0131 sonsuza kadar giderler. Yani \"0\"\u0131n iki yan\u0131ndan sonsuza kadar uzan\u0131rlar. ''Tam say\u0131lar k\u00fcmesi'' <math>\\scriptstyle\\mathbb Z</math> ile g\u00f6sterilir. Buradaki Z harfi, Almanca 'Zahl' (say\u0131) kelimesinden t\u00fcremi\u015ftir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><math></ins>\\<ins class=\"diffchange diffchange-inline\">scriptstyle</ins>\\<ins class=\"diffchange diffchange-inline\">mathbb Z = </ins>\\<ins class=\"diffchange diffchange-inline\">{..., -4</ins>, <ins class=\"diffchange diffchange-inline\">-3, -2, -1, 0, 1, 2, 3, ... \\} </math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==== Pozitif tam say\u0131lar ====</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Ba\u015f\u0131nda \"+\" i\u015fareti bulunan veya bir \u015fey bulunmayan tam say\u0131lar '''pozitif tam say\u0131lar''' ad\u0131n\u0131 al\u0131rlar. Say\u0131 ekseninde (say\u0131 do\u011frusunda) 0'\u0131n sa\u011f yan\u0131nda yer al\u0131rlar. T\u00fcm sayma say\u0131lar\u0131 pozitif tam say\u0131lard\u0131r. ''Pozitif tam say\u0131lar k\u00fcmesi'' <math>\\scriptstyle</ins>\\<ins class=\"diffchange diffchange-inline\">mathbb Z^{+}</ins></math> <ins class=\"diffchange diffchange-inline\">ile g\u00f6sterilir ve a\u015fa\u011f\u0131daki gibi tan\u0131ml\u0131d\u0131r:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><math><ins class=\"diffchange diffchange-inline\">\\scriptstyle\\mathbb Z^{+} = \\{ +</ins>1<ins class=\"diffchange diffchange-inline\">, </ins>+2<ins class=\"diffchange diffchange-inline\">, </ins>+3<ins class=\"diffchange diffchange-inline\">, +4, +5... \\} </math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==== Negatif tam say\u0131lar ====</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Ba\u015f\u0131nda \"-\" i\u015fareti olan tam say\u0131lar '''negatif tam say\u0131lar''' ad\u0131n\u0131 al\u0131rlar. Say\u0131 ekseninde 0'\u0131n sol yan\u0131nda yer al\u0131rlar. ''Negatif tam say\u0131lar k\u00fcmesi'' <math>\\scriptstyle\\mathbb Z^{-}</math> ile g\u00f6sterilir. Cebirde \u00e7\u0131karma i\u015flemi bu say\u0131lar\u0131n di\u011fer tam say\u0131larla toplanmas\u0131 olarak ifade edilir</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><math>\\scriptstyle\\mathbb Z^{-} = \\{ </ins>...<ins class=\"diffchange diffchange-inline\">, -3, -2, -1 \\} </math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==== S\u0131f\u0131r ===</ins>=</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Tam say\u0131d\u0131r</ins>. <ins class=\"diffchange diffchange-inline\">S\u0131f\u0131r </ins>(<ins class=\"diffchange diffchange-inline\">0) negatif veya pozitif bir tam say\u0131 de\u011fildir. Bir uzla\u015fma noktas\u0131d\u0131r. Bu iki k\u00fcmeden herhangi birinde yer almaz. Ancak tam say\u0131lar a\u015fa\u011f\u0131daki gibi de tan\u0131mlanabilir:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><math>\\scriptstyle\\mathbb Z = \\scriptstyle\\mathbb Z^{-} \\cup \\{ 0 \\} \\cup \\scriptstyle\\mathbb Z^{</ins>+<ins class=\"diffchange diffchange-inline\">}</math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">S\u0131f\u0131r\u0131n do\u011fal say\u0131 kabul edilmedi\u011fi (akademik) \u00e7evreler az\u0131msanmayacak kadar fazlad\u0131r. S\u0131f\u0131r\u0131 dahil eden \u00e7evreler ''do\u011fal say\u0131lar k\u00fcmesi''ni <math>\\scriptstyle\\mathbb{N}_{(0</ins>)<ins class=\"diffchange diffchange-inline\">}</math> sembol\u00fc ile g\u00f6sterirler, s\u0131f\u0131r\u0131 dahil etmeyen \u00e7evrelerse s\u0131f\u0131r\u0131n dahil olmad\u0131\u011f\u0131 ''sayma say\u0131lar\u0131 k\u00fcmesi''ni <math>\\scriptstyle\\mathbb{N}^{+}<</ins>/<ins class=\"diffchange diffchange-inline\">math> ile g\u00f6sterirler.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Rasyonel say\u0131lar ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Ana|Rasyonel say\u0131lar}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bir rasyonel say\u0131, tam say\u0131 bir pay ve pozitif tam say\u0131 bir payda ile ifade edilebilen bir [[kesir]] olarak tan\u0131mlan\u0131r. Negatif paydalar kullan\u0131labilir ancak her rasyonel say\u0131 pozitif bir payda ile e\u015fit oldu\u011fundan, genellikle bu durumdan ka\u00e7\u0131n\u0131l\u0131r. Kesirler, pay ve payda olarak iki tam say\u0131 ile ifade edilir ve bu iki say\u0131 aras\u0131nda bir b\u00f6lme i\u015fareti bulunur. {{sfrac|''m''|''n''}} kesri, ''n'' e\u015fit par\u00e7aya b\u00f6l\u00fcnm\u00fc\u015f bir b\u00fct\u00fcn\u00fcn ''m'' par\u00e7as\u0131n\u0131 ifade eder. Farkl\u0131 iki kesir, ayn\u0131 rasyonel say\u0131y\u0131 temsil edebilir; \u00f6rne\u011fin {{sfrac|1|2}} ile {{sfrac|2|4}} birbirine e\u015fittir, yani:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>{1 \\over 2} = {</ins>2 \\<ins class=\"diffchange diffchange-inline\">over 4}.</math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Genel bir ifade ile,</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>{a \\over b} = {c \\over d}</math></ins>, <ins class=\"diffchange diffchange-inline\">sadece ve sadece <math>{a \\times d} = {c </ins>\\<ins class=\"diffchange diffchange-inline\">times b}.</ins></math> <ins class=\"diffchange diffchange-inline\">oldu\u011funda ge\u00e7erlidir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">E\u011fer ''m'' say\u0131s\u0131n\u0131n [[mutlak de\u011fer]]i, pozitif kabul edilen ''n'' say\u0131s\u0131ndan daha b\u00fcy\u00fckse, kesirin mutlak de\u011feri 1'den fazla olacakt\u0131r. Kesirler, 1'e g\u00f6re b\u00fcy\u00fck, k\u00fc\u00e7\u00fck veya ona e\u015fit olabilirler; ayr\u0131ca pozitif, negatif veya 0 de\u011ferlerini alabilirler. T\u00fcm rasyonel say\u0131lar k\u00fcmesi, her bir tam say\u0131n\u0131n paydas\u0131 1 olarak belirlenebilen bir kesir bi\u00e7iminde ifade edilebildi\u011fi i\u00e7in, tam say\u0131lar\u0131 da kapsar. \u00d6rnek olarak \u22127 say\u0131s\u0131, {{sfrac|\u22127</ins>|<ins class=\"diffchange diffchange-inline\">1}} \u015feklinde ifade edilebilir. Rasyonel say\u0131lar i\u00e7in kullan\u0131lan sembol 'Q'dur (quotient, yani b\u00f6l\u00fcm kelimesinden gelir) ve <math>\\mathbb{Q}</math> \u015feklinde de g\u00f6sterilir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Reel say\u0131lar ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Ana</ins>|<ins class=\"diffchange diffchange-inline\">Reel say\u0131lar}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">''\u0130rrasyonel say\u0131lar'' k\u00fcmesi ile ''rasyonel say\u0131lar'' k\u00fcmesinin birle\u015fimi '''ger\u00e7ek say\u0131lar''' k\u00fcmesini olu\u015fturur. Bu k\u00fcmeye ''reel say\u0131lar'' veya ger\u00e7ek say\u0131lar da denir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Reel say\u0131lar i\u00e7in kullan\u0131lan sembol 'R'dir ve <math>\\mathbb{R}</ins><<ins class=\"diffchange diffchange-inline\">/math</ins>> <ins class=\"diffchange diffchange-inline\">\u015feklinde de ifade edilir. Bu sembol, \u00f6l\u00e7\u00fcmle ilgili t\u00fcm say\u0131lar\u0131 kapsar. Her bir reel say\u0131, say\u0131 do\u011frusu \u00fczerinde belirli bir noktayla ili\u015fkilendirilir. \u0130zleyen metin, \u00f6zellikle pozitif reel say\u0131lar \u00fczerine yo\u011funla\u015facakt\u0131r. Negatif reel say\u0131lar\u0131n i\u015fleni\u015fi, aritmetik kurallar\u0131n genel prensipleri \u00e7er\u00e7evesinde ger\u00e7ekle\u015ftirilir ve bunlar\u0131n g\u00f6sterimi, kar\u015f\u0131l\u0131k gelen pozitif say\u0131n\u0131n \u00f6n\u00fcne eksi i\u015fareti eklenerek yap\u0131l\u0131r, mesela -123.456.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bir\u00e7ok reel say\u0131, ancak ondal\u0131k say\u0131lar arac\u0131l\u0131\u011f\u0131yla ''yakla\u015f\u0131k'' bir bi\u00e7imde temsil edilebilir; bu durumda ondal\u0131k nokta, birler basama\u011f\u0131ndaki rakam\u0131n hemen sa\u011f taraf\u0131na konumland\u0131r\u0131l\u0131r. Ondal\u0131k noktas\u0131n\u0131n sa\u011f taraf\u0131nda yer alan her bir rakam, solundaki rakam\u0131n basamak de\u011ferinin onda birine e\u015fit bir de\u011fere sahiptir. Mesela, 123.456 say\u0131s\u0131, {{sfrac|123456|1000}} olarak ifade edilir ki bu, y\u00fcz iki on, \u00fc\u00e7 bir, d\u00f6rt ondal\u0131k, be\u015f y\u00fczdelik ve alt\u0131 binde bir anlam\u0131na gelir. Bir reel say\u0131, yaln\u0131zca rasyonel ise ve onun kesirli k\u0131sm\u0131, 2 veya 5 say\u0131lar\u0131n\u0131n asal \u00e7arpanlar\u0131n\u0131 i\u00e7eren bir paydaya sahipse, s\u0131n\u0131rl\u0131 say\u0131da ondal\u0131k basamak ile ifade edilebilir. Bu say\u0131lar, ondal\u0131k sistemdeki taban olan 10'un asal \u00e7arpanlar\u0131d\u0131r. \u00d6rne\u011fin, bir yar\u0131m i\u00e7in 0.5, bir be\u015fte bir i\u00e7in 0.2, bir onda bir i\u00e7in 0.1 ve bir elli de bir i\u00e7in 0.02 de\u011ferleri kullan\u0131l\u0131r. Di\u011fer reel say\u0131lar\u0131 ondal\u0131k olarak ifade etmek, ondal\u0131k noktas\u0131n\u0131n sa\u011f taraf\u0131nda sonsuz bir rakam dizisi gerektirecektir. E\u011fer bu sonsuz rakam dizisi belli bir deseni izliyorsa, bu desen \u00fc\u00e7 nokta veya deseni g\u00f6steren di\u011fer bir g\u00f6sterim ile ifade edilebilir. Bu t\u00fcr bir ondal\u0131k say\u0131ya 'tekrar eden ondal\u0131k' denir. Bu ba\u011flamda, {{sfrac|1|3}} say\u0131s\u0131, desenin s\u00fcreklili\u011fini belirten \u00fc\u00e7 nokta ile 0.333... \u015feklinde ifade edilir. S\u00fcrekli tekrar eden 3'ler ayr\u0131ca 0.{{overline|3}} \u015feklinde de g\u00f6sterilir.{{r|Weisstein_2020}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu tekrar eden ondal\u0131k say\u0131lar (s\u0131f\u0131rlar\u0131n yeniden olu\u015fumu dahil), rasyonel say\u0131lar\u0131 kesinlikle belirtir; yani, her rasyonel say\u0131 reel bir say\u0131d\u0131r ancak her reel say\u0131n\u0131n rasyonel olmas\u0131 gerekmez. Rasyonel olmayan reel say\u0131lara </ins>[[<ins class=\"diffchange diffchange-inline\">irrasyonel say\u0131</ins>]] <ins class=\"diffchange diffchange-inline\">ad\u0131 verilir. Tan\u0131nm\u0131\u015f irrasyonel ger\u00e7ek say\u0131lardan biri</ins>, <ins class=\"diffchange diffchange-inline\">herhangi bir dairenin \u00e7evresinin \u00e7ap\u0131na oran\u0131 olan </ins>[[<ins class=\"diffchange diffchange-inline\">pi </ins>say\u0131s\u0131|<ins class=\"diffchange diffchange-inline\">{{pi}}</ins>]] <ins class=\"diffchange diffchange-inline\">say\u0131s\u0131d\u0131r. Pi, bazen</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:</ins><<ins class=\"diffchange diffchange-inline\">math</ins>><ins class=\"diffchange diffchange-inline\">\\pi = 3.14159265358979\\dots,</ins><<ins class=\"diffchange diffchange-inline\">/</ins>math></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u015feklinde ifade edildi\u011finde, noktal\u0131 virg\u00fcl, ondal\u0131k k\u0131sm\u0131n tekrar etti\u011fini de\u011fil</ins>, <ins class=\"diffchange diffchange-inline\">ondal\u0131k k\u0131sm\u0131n sonunun olmad\u0131\u011f\u0131n\u0131 g\u00f6sterir. {{pi}} say\u0131s\u0131n\u0131n irrasyonel oldu\u011fu ispatlanm\u0131\u015ft\u0131r. \u0130rrasyonel bir reel say\u0131 oldu\u011fu ispatlanan di\u011fer bir \u00fcnl\u00fc say\u0131</ins>,</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>\\sqrt{2} = 1.41421356237</ins>\\<ins class=\"diffchange diffchange-inline\">dots</ins>,</math></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">2'nin karek\u00f6k\u00fcd\u00fcr, yani karesi 2 olan benzersiz pozitif ger\u00e7ek say\u0131d\u0131r. Bu iki say\u0131, trilyonlarca {{kayma</ins>|<ins class=\"diffchange diffchange-inline\">( 1 trilyon {{=}} 10<sup>12</sup> {{=}} 1,000,000,000,000 )}} basama\u011fa kadar (bilgisayar yard\u0131m\u0131yla) yakla\u015f\u0131k olarak hesaplanm\u0131\u015ft\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bu belirgin \u00f6rneklerin yan\u0131 s\u0131ra, reel say\u0131lar\u0131n neredeyse tamam\u0131 irrasyonel niteliktedir ve bu sebepten \u00f6t\u00fcr\u00fc tekrar eden desenlere sahip de\u011fillerdir, bu y\u00fczden bunlara kar\u015f\u0131l\u0131k gelen ondal\u0131k g\u00f6sterimleri de mevcut de\u011fildir. Bu say\u0131lar, yaln\u0131zca ondal\u0131k g\u00f6sterimlerle yakla\u015f\u0131k bir \u015fekilde temsil edilebilirler; bu, yuvarlanm\u0131\u015f ya da kesilmi\u015f reel say\u0131lar\u0131 ifade eder. Herhangi bir yuvarlanm\u0131\u015f veya kesilmi\u015f say\u0131 do\u011fas\u0131 gere\u011fi bir rasyonel say\u0131d\u0131r ve bunlardan yaln\u0131zca say\u0131labilir derecede \u00e7oklukta bulunur. \u00d6l\u00e7\u00fcmlerin t\u00fcm\u00fc, do\u011falar\u0131 gere\u011fi yakla\u015f\u0131k de\u011ferlerdir ve daima bir hata marj\u0131na sahiptirler. Bu \u00e7er\u00e7evede, 123.456 say\u0131s\u0131, {{sfrac|1234555|10000}}'den b\u00fcy\u00fck veya e\u015fit ve {{sfrac|1234565|10000}}'den kesinlikle k\u00fc\u00e7\u00fck olan herhangi bir ger\u00e7ek say\u0131 i\u00e7in bir yakla\u015f\u0131k olarak kabul edilir (3 ondal\u0131k basama\u011fa yuvarlama); ya da {{sfrac|123456|1000}}'den b\u00fcy\u00fck veya e\u015fit ve {{sfrac|123457|1000}}'den kesinlikle k\u00fc\u00e7\u00fck olan herhangi bir reel say\u0131 i\u00e7in bir yakla\u015f\u0131k olarak kabul edilir (3. ondal\u0131k basama\u011f\u0131n ard\u0131ndan kesme). \u00d6l\u00e7\u00fcm\u00fcn kendisi kadar hassasiyeti \u00f6neren rakamlar elenmelidir. Kalan rakamlar, o zaman \u00f6nemli rakamlar olarak adland\u0131r\u0131l\u0131r. \u00d6rne\u011fin, bir cetvel ile yap\u0131lan \u00f6l\u00e7\u00fcmler genellikle en az 0.001 metre hata pay\u0131 olmaks\u0131z\u0131n ger\u00e7ekle\u015ftirilemez. E\u011fer bir dikd\u00f6rtgenin kenarlar\u0131 1.23 m ve 4.56 m olarak \u00f6l\u00e7\u00fcl\u00fcrse, \u00e7arp\u0131m sonucunda dikd\u00f6rtgenin alan\u0131 i\u00e7in {{kayma|5.614591 m<sup>2</sup>}} ile {{kayma</ins>|<ins class=\"diffchange diffchange-inline\">5.603011 m<sup>2</ins><<ins class=\"diffchange diffchange-inline\">/sup</ins>><ins class=\"diffchange diffchange-inline\">}} aras\u0131nda bir de\u011fer elde edilir. Ondal\u0131k noktas\u0131ndan sonra ikinci basamak bile korunmad\u0131\u011f\u0131 i\u00e7in, sonraki basamaklar ''\u00f6nemli'' kabul edilmez. Bu sebeple, sonu\u00e7 genelde 5.61 olarak yuvarlan\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Ayn\u0131 kesir birden fazla \u015fekilde ifade edilebildi\u011fi gibi, ayn\u0131 reel say\u0131n\u0131n da birden fazla ondal\u0131k g\u00f6sterimi m\u00fcmk\u00fcnd\u00fcr. \u00d6rnek olarak, [[0.999...]], 1.0, 1.00, 1.000, ..., hepsi 1 do\u011fal say\u0131s\u0131n\u0131 ifade eder. Bir reel say\u0131 i\u00e7in m\u00fcmk\u00fcn olan ondal\u0131k g\u00f6sterimler; belirli bir ondal\u0131k basama\u011f\u0131na kadar olan bir yakla\u015f\u0131m</ins>, <ins class=\"diffchange diffchange-inline\">s\u0131n\u0131rs\u0131z say\u0131da ondal\u0131k basama\u011f\u0131 boyunca devam eden bir desenin olu\u015fturuldu\u011fu bir yakla\u015f\u0131m veya yaln\u0131zca sonlu say\u0131da ondal\u0131k basama\u011f\u0131 i\u00e7eren bir kesin de\u011fer \u015feklinde olabilir. Bu son durumda, son s\u0131f\u0131r olmayan basamak, bir alt\u0131ndaki rakam ile de\u011fi\u015ftirilip ard\u0131ndan s\u0131n\u0131rs\u0131z say\u0131da 9 eklenerek veya son s\u0131f\u0131r olmayan basama\u011f\u0131n ard\u0131ndan s\u0131n\u0131rs\u0131z say\u0131da 0 eklenerek de ifade edilebilir. Dolay\u0131s\u0131yla, kesin bir ger\u00e7ek say\u0131 olan 3.74, ayn\u0131 zamanda 3.7399999999... ve 3.74000000000.... olarak da ifade edilebilir. Benzer bi\u00e7imde, s\u0131n\u0131rs\u0131z say\u0131da 0 i\u00e7eren bir ondal\u0131k say\u0131, sa\u011fdaki en u\u00e7taki s\u0131f\u0131r olmayan basama\u011f\u0131n sa\u011f\u0131nda yer alan 0'lar \u00e7\u0131kar\u0131larak; s\u0131n\u0131rs\u0131z say\u0131da 9 i\u00e7eren bir ondal\u0131k say\u0131 ise, 9'dan k\u00fc\u00e7\u00fck olan en sa\u011fdaki basama\u011f\u0131n bir art\u0131r\u0131lmas\u0131 ve bu basama\u011f\u0131n sa\u011f\u0131nda yer alan t\u00fcm 9'lar\u0131n 0'a d\u00f6n\u00fc\u015ft\u00fcr\u00fclmesiyle yeniden yaz\u0131labilir. Son olarak, bir ondal\u0131k noktas\u0131n\u0131n sa\u011f\u0131ndaki s\u0131n\u0131rs\u0131z 0 dizisi g\u00f6z ard\u0131 edilebilir. \u00d6rne\u011fin, 6.849999999999... = 6.85 ve 6.850000000000... = 6.85 olarak kabul edilir. E\u011fer bir say\u0131sal ifadedeki t\u00fcm rakamlar 0 ise, bu say\u0131 0 olarak kabul edilir ve e\u011fer bir say\u0131sal ifadedeki t\u00fcm rakamlar bitmeyen bir 9 dizisinden olu\u015fuyorsa, ondal\u0131k noktas\u0131n\u0131n sa\u011f\u0131ndaki dokuzlar ihmal edilip, ondal\u0131k noktas\u0131n\u0131n solundaki 9 dizisine bir eklenerek ifade edilebilir. Mesela, 99.999... = 100 olarak kabul edilir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Reel say\u0131lar, [[enaz ve en\u00fcs]] olarak bilinen ancak olduk\u00e7a teknik d\u00fczeyde bir \u00f6zelli\u011fe sahiptir. Bir [[s\u0131ral\u0131 alan]]\u0131n, reel say\u0131lar\u0131n [[taml\u0131k]] \u00f6zelli\u011fine de sahip oldu\u011fu ispatland\u0131\u011f\u0131nda, bu alan\u0131n ger\u00e7ek say\u0131larla izomorf oldu\u011fu ortaya konabilir. Fakat</ins>, <ins class=\"diffchange diffchange-inline\">ger\u00e7ek say\u0131lar <math> x^2+1=0</ins></math> <ins class=\"diffchange diffchange-inline\">cebirsel denkleminin bir \u00e7\u00f6z\u00fcm\u00fcn\u00fc (\u00e7o\u011funlukla [[i say\u0131s\u0131</ins>|<ins class=\"diffchange diffchange-inline\">eksi birin karek\u00f6k\u00fc]] olarak ifade edilir) i\u00e7ermedikleri i\u00e7in, [[cebirsel kapal\u0131 cisim]] olu\u015fturmazlar.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Karma\u015f\u0131k say\u0131lar ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Ana</ins>|<ins class=\"diffchange diffchange-inline\">Karma\u015f\u0131k say\u0131lar}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Daha y\u00fcksek bir soyutlama d\u00fczeyine ge\u00e7ildi\u011finde, reel say\u0131lar, karma\u015f\u0131k say\u0131lara geni\u015fletilebilir. Bu say\u0131lar k\u00fcmesi, tarih boyunca k\u00fcbik ve kuadratik polinomlar\u0131n k\u00f6klerine ili\u015fkin kapal\u0131 form\u00fcllerin ara\u015ft\u0131r\u0131lmas\u0131 s\u00fcrecinde geli\u015fmi\u015ftir. Bu aray\u0131\u015f, negatif say\u0131lar\u0131n karek\u00f6klerini i\u00e7eren ifadelere ve sonu\u00e7 olarak -1 say\u0131s\u0131n\u0131n [[karek\u00f6k]]\u00fc olan yeni bir say\u0131n\u0131n tan\u0131m\u0131na yol a\u00e7m\u0131\u015ft\u0131r; bu say\u0131, [[Leonhard Euler]] taraf\u0131ndan ''i'' olarak sembolize edilen ve hayali birim olarak adland\u0131r\u0131lan bir birimdir. Karma\u015f\u0131k say\u0131lar, ''a'' ve ''b'' reel say\u0131lar\u0131 olmak \u00fczere, <math>a + b i</ins><<ins class=\"diffchange diffchange-inline\">/</ins>math> <ins class=\"diffchange diffchange-inline\">bi\u00e7imindeki t\u00fcm say\u0131lar\u0131 kapsar. Bu ba\u011flamda, karma\u015f\u0131k say\u0131lar, iki ger\u00e7ek boyutlu bir vekt\u00f6r uzay\u0131 olan karma\u015f\u0131k d\u00fczlem \u00fczerinde noktalara denk gelir. ''a + bi'' ifadesinde ''a'', ger\u00e7ek k\u0131sm\u0131 ve ''b'', hayali k\u0131sm\u0131 temsil eder. Bir karma\u015f\u0131k say\u0131n\u0131n ger\u00e7ek k\u0131sm\u0131 0 ise, bu say\u0131 hayali say\u0131 olarak adland\u0131r\u0131l\u0131r veya tamamen hayali olarak nitelendirilir; hayali k\u0131sm\u0131 </ins>0 <ins class=\"diffchange diffchange-inline\">ise, bu say\u0131 bir ger\u00e7ek say\u0131d\u0131r. B\u00f6ylelikle, reel say\u0131lar karma\u015f\u0131k say\u0131lar\u0131n bir alt k\u00fcmesini olu\u015fturur. E\u011fer bir karma\u015f\u0131k say\u0131n\u0131n ger\u00e7ek ve hayali k\u0131s\u0131mlar\u0131 tam say\u0131 ise, bu say\u0131 [[Gauss tam say\u0131s\u0131]] olarak isimlendirilir. Karma\u015f\u0131k say\u0131lar i\u00e7in kullan\u0131lan sembol</ins>, <ins class=\"diffchange diffchange-inline\">'C' veya <math></ins>\\<ins class=\"diffchange diffchange-inline\">mathbb{C}</ins></math><ins class=\"diffchange diffchange-inline\">'dir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Cebirin temel teoremi]], karma\u015f\u0131k say\u0131lar\u0131n cebirsel olarak kapal\u0131 bir alan olu\u015fturdu\u011funu, yani karma\u015f\u0131k katsay\u0131lara sahip her polinomun karma\u015f\u0131k say\u0131lar i\u00e7inde bir k\u00f6k\u00fc oldu\u011funu ifade eder. Ger\u00e7ek say\u0131lar gibi, karma\u015f\u0131k say\u0131lar da bir alan olu\u015fturur ve bu alan tamd\u0131r; fakat ger\u00e7ek say\u0131lardan farkl\u0131 olarak s\u0131ral\u0131 de\u011fildir. Yani, ''i''nin 1'den b\u00fcy\u00fck oldu\u011funu ya da ''i''nin 1'den k\u00fc\u00e7\u00fck oldu\u011funu ifade etmenin tutarl\u0131 bir anlam\u0131 yoktur. Teknik bir dille ifade edilecek olursa, karma\u015f\u0131k say\u0131lar, alan i\u015flemleriyle uyumlu bir total s\u0131ralamadan yoksundur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Tam say\u0131lar\u0131n alt kategorileri==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===\u00c7ift ve tek say\u0131lar===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Ana|Parite (matematik)}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bir '''\u00e7ift say\u0131''', [[Kalanl\u0131 b\u00f6lme|iki say\u0131s\u0131na tam olarak b\u00f6l\u00fcnebilen]] ve b\u00f6ylece kalan b\u0131rakmayan bir tam say\u0131d\u0131r; buna kar\u015f\u0131l\u0131k, bir '''tek say\u0131''' \u00e7ift olmayan tam say\u0131lard\u0131r. G\u00fcn\u00fcm\u00fczde \"tam b\u00f6l\u00fcnebilir\" \u015feklindeki eski usul ifade, genellikle \"[[B\u00f6len</ins>|<ins class=\"diffchange diffchange-inline\">b\u00f6l\u00fcnebilir]]\" \u015feklinde k\u0131salt\u0131larak kullan\u0131lmaktad\u0131r. Herhangi bir tek say\u0131 ''n'', uygun bir ''k'' tam say\u0131s\u0131 i\u00e7in ''n = 2k + 1'' form\u00fcl\u00fc ile ifade edilebilir. ''k = 0'' ile ba\u015fland\u0131\u011f\u0131nda, ilk negatif olmayan tek say\u0131lar {1, 3, 5, 7, ...} olarak s\u0131ralan\u0131r. Her \u00e7ift say\u0131 ''m'', yine bir tam say\u0131 olan ''k'' i\u00e7in ''m = 2k'' \u015feklinde ifade edilebilir. Benzer bi\u00e7imde, ilk negatif olmayan \u00e7ift say\u0131lar {0, 2, 4, 6, ...} olarak belirlenir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Asal say\u0131lar===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{ana</ins>|<ins class=\"diffchange diffchange-inline\">Asal say\u0131}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bir '''asal say\u0131''', genellikle sadece '''asal''' olarak k\u0131salt\u0131lan, 1'den b\u00fcy\u00fck ve iki daha k\u00fc\u00e7\u00fck pozitif tam say\u0131n\u0131n \u00e7arp\u0131m\u0131 olmayan bir tam say\u0131d\u0131r. \u0130lk birka\u00e7 asal say\u0131 2, 3, 5, 7 ve 11'dir. \u00c7ift ve tek say\u0131lar i\u00e7in mevcut olan basit form\u00fcllerin aksine, asal say\u0131lar\u0131 t\u00fcretecek bir form\u00fcl bulunmamaktad\u0131r. Asal say\u0131lar \u00fczerine 2000 y\u0131ldan fazla s\u00fcredir yap\u0131lan geni\u015f \u00e7apl\u0131 \u00e7al\u0131\u015fmalar, \u00e7e\u015fitli sorular\u0131 g\u00fcndeme getirmi\u015f, bunlar\u0131n yaln\u0131zca bir k\u0131sm\u0131na yan\u0131t bulunabilmi\u015ftir. Bu t\u00fcr sorular\u0131n ele al\u0131n\u0131\u015f\u0131, [[say\u0131lar teorisi]] disiplinine aittir. [[Goldbach'\u0131n varsay\u0131m\u0131]], halen yan\u0131tlanmam\u0131\u015f sorulardan birine \u00f6rnek te\u015fkil eder: \"Her \u00e7ift say\u0131, iki asal say\u0131n\u0131n toplam\u0131 m\u0131d\u0131r?\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bir'den b\u00fcy\u00fck her tam say\u0131n\u0131n, asal say\u0131lar\u0131n \u00e7arp\u0131m\u0131 olarak yaln\u0131zca tek bir yolda ifade edilebilece\u011fi, asal say\u0131lar\u0131n yeniden d\u00fczenlenmesi d\u0131\u015f\u0131nda, sorusuna verilen yan\u0131t do\u011frulanm\u0131\u015ft\u0131r; bu ispatlanm\u0131\u015f iddia, [[aritmeti\u011fin temel teoremi]] olarak bilinir. Bir kan\u0131t, [[\u00d6klid'in Elementleri]] eserinde sunulmu\u015ftur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Di\u011fer tam say\u0131 s\u0131n\u0131flar\u0131===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Do\u011fal say\u0131lar\u0131n \u00e7e\u015fitli alt k\u00fcmeleri, belirli \u00e7al\u0131\u015fmalar\u0131n odak noktas\u0131 olmu\u015f ve \u00e7o\u011funlukla bu say\u0131lar \u00fczerine \u00e7al\u0131\u015fmalar yapan ilk matematik\u00e7inin ad\u0131yla an\u0131lm\u0131\u015ft\u0131r. [[Fibonacci say\u0131lar\u0131]] ve [[m\u00fckemmel say\u0131]]lar gibi tam say\u0131 k\u00fcmeleri, bu t\u00fcr \u00f6rnekler aras\u0131nda yer al\u0131r. Daha fazla \u00f6rnek i\u00e7in [[ard\u0131\u015f\u0131k say\u0131lar]] maddesine ba\u015fvurulabilir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Karma\u015f\u0131k Say\u0131lar\u0131n alt kategorileri==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Cebirsel, \u0130rrasyonel ve Transandantal say\u0131lar===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Tam say\u0131 katsay\u0131lar\u0131na sahip bir polinom denkleminin \u00e7\u00f6z\u00fcm\u00fc olan say\u0131lar, [[cebirsel say\u0131]] olarak adland\u0131r\u0131l\u0131r. Rasyonel say\u0131lar d\u0131\u015f\u0131ndaki reel say\u0131lara [[irrasyonel say\u0131]] ad\u0131 verilir. Cebirsel olmayan karma\u015f\u0131k say\u0131larsa </ins>[[<ins class=\"diffchange diffchange-inline\">transandantal say\u0131]] olarak tan\u0131mlan\u0131r. Tam say\u0131 katsay\u0131l\u0131 monik polinom denkleminin \u00e7\u00f6z\u00fcmleri olan cebirsel </ins>say\u0131lar<ins class=\"diffchange diffchange-inline\">, [[cebirsel tam say\u0131</ins>]] <ins class=\"diffchange diffchange-inline\">olarak isimlendirilir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===\u0130n\u015fa-edilebilir say\u0131lar===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>[[<ins class=\"diffchange diffchange-inline\">Pergel ve \u00e7izgilik \u00e7izimleri]] \u00e7al\u0131\u015fmalar\u0131n\u0131n klasik sorunlar\u0131ndan esinlenilerek, birim uzunluktaki belirli bir segmentten ba\u015flayarak, perge ve \u00e7ember kullan\u0131larak sonlu ad\u0131mlarda in\u015fa edilebilen </ins>karma\u015f\u0131k <ins class=\"diffchange diffchange-inline\">say\u0131lar\u0131n ger\u00e7ek ve sanal k\u0131s\u0131mlar\u0131na sahip say\u0131lar, [[in\u015fa-edilebilir say\u0131]] olarak tan\u0131mlan\u0131r.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Hesaplanabilir </ins>say\u0131lar<ins class=\"diffchange diffchange-inline\">===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bir ''hesaplanabilir say\u0131'', ayn\u0131 zamanda ''rek\u00fcrsif say\u0131'' olarak da tan\u0131mlanan, belirli bir pozitif ''n'' de\u011feri verildi\u011finde, hesaplanabilir say\u0131n\u0131n ondal\u0131k g\u00f6sterimindeki ilk ''n'' rakam\u0131 \u00fcretebilen bir algoritman\u0131n mevcut oldu\u011fu bir reel say\u0131d\u0131r. E\u015f de\u011fer tan\u0131mlamalar, [[genel rek\u00fcrsif fonksiyon]]lar, [[Turing makinesi]]ler veya [[Lamda kalk\u00fcl\u00fcs|\u03bb-hesaplamas\u0131</ins>]] <ins class=\"diffchange diffchange-inline\">arac\u0131l\u0131\u011f\u0131yla yap\u0131labilir. Hesaplanabilir say\u0131lar, bir polinomun k\u00f6klerinin elde edilmesi de dahil olmak \u00fczere, t\u00fcm standart aritmetik i\u015flemler a\u00e7\u0131s\u0131ndan stabil olup, reel cebirsel say\u0131lar\u0131 i\u00e7eren bir ger\u00e7ek kapal\u0131 alan olu\u015fturur.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Hesaplanabilir say\u0131lar, bir bilgisayarda kesin bir \u015fekilde ifade edilebilecek reel say\u0131lar olarak de\u011ferlendirilebilir: bir hesaplanabilir say\u0131, ilk rakamlar\u0131 ve daha fazla rakam\u0131 hesaplamak \u00fczere tasarlanm\u0131\u015f bir program ile kesin bir \u015fekilde belirlenir. Ancak, hesaplanabilir say\u0131lar pratikte nadiren tercih edilir. Bunun bir sebebi, iki hesaplanabilir say\u0131n\u0131n e\u015fitli\u011finin test edilmesi i\u00e7in bir algoritman\u0131n bulunmamas\u0131d\u0131r. Daha net bir ifadeyle, herhangi bir hesaplanabilir say\u0131y\u0131 girdi olarak kabul eden ve bu say\u0131n\u0131n s\u0131f\u0131ra e\u015fit olup olmad\u0131\u011f\u0131n\u0131 her durumda belirleyebilecek bir algoritma mevcut olamaz.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Hesaplanabilir say\u0131lar k\u00fcmesi, do\u011fal say\u0131larla ayn\u0131 kardinaliteye sahiptir. Bu nedenle, neredeyse t\u00fcm reel say\u0131lar hesaplanabilir de\u011fildir. Yine de, hesaplanabilir olmayan bir reel say\u0131y\u0131 a\u00e7\u0131k\u00e7a belirlemek b\u00fcy\u00fck bir zorluk te\u015fkil eder.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Kavram uzant\u0131lar\u0131==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Dosya:Primencomposite0100.png|k\u00fc\u00e7\u00fckresim</ins>|<ins class=\"diffchange diffchange-inline\">0'dan 100'e kadar asal ve bile\u015fik say\u0131lar. Asal say\u0131lar Bile\u015fik say\u0131lar 0 ve 1]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===p-adik say\u0131lar===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">''p''-adik say\u0131lar, reel say\u0131lar\u0131n ondal\u0131k noktas\u0131n\u0131n sa\u011f\u0131nda sonsuza kadar uzayabilen uzant\u0131lara sahip olabilece\u011fi gibi, ondal\u0131k noktas\u0131n\u0131n solunda da sonsuz uzunlukta geni\u015flemelere sahip olabilir. Sonu\u00e7lanan say\u0131 sistemi, basamaklar i\u00e7in hangi [[Taban (aritmetik)</ins>|<ins class=\"diffchange diffchange-inline\">taban\u0131n]] kullan\u0131ld\u0131\u011f\u0131na ba\u011fl\u0131d\u0131r: herhangi bir taban m\u00fcmk\u00fcnd\u00fcr, ancak bir </ins>[[<ins class=\"diffchange diffchange-inline\">asal say\u0131]] taban\u0131 en iyi matematiksel \u00f6zellikleri sa\u011flar. ''p''</ins>-<ins class=\"diffchange diffchange-inline\">adik </ins>say\u0131lar <ins class=\"diffchange diffchange-inline\">k\u00fcmesi, rasyonel say\u0131lar\u0131 i\u00e7erir, ancak karma\u015f\u0131k say\u0131lar\u0131n i\u00e7inde yer almaz.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Bir [[sonlu alan</ins>]] <ins class=\"diffchange diffchange-inline\">\u00fczerindeki bir </ins>[[<ins class=\"diffchange diffchange-inline\">cebirsel fonksiyon alan\u0131]]n\u0131n elemanlar\u0131 ve cebirsel say\u0131lar bir\u00e7ok benzer \u00f6zelli\u011fe sahiptir. Bu nedenle, say\u0131lar teorisyenleri taraf\u0131ndan s\u0131kl\u0131kla say\u0131lar olarak kabul edilirler. ''p''-adik say\u0131lar, bu analojide \u00f6nemli bir rol oynar.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Hiperkompleks </ins>say\u0131lar<ins class=\"diffchange diffchange-inline\">===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Karma\u015f\u0131k say\u0131lar\u0131n i\u00e7inde yer almayan baz\u0131 say\u0131 sistemleri, karma\u015f\u0131k say\u0131lar\u0131n in\u015fas\u0131n\u0131 genelle\u015ftirerek reel say\u0131lardan t\u00fcretilebilir. Bunlar bazen [[hiperkompleks say\u0131</ins>]] <ins class=\"diffchange diffchange-inline\">olarak adland\u0131r\u0131l\u0131r. Bunlara, \u00e7arpma i\u015fleminin [[De\u011fi\u015fme \u00f6zelli\u011fi</ins>|<ins class=\"diffchange diffchange-inline\">de\u011fi\u015fmeli olmayan]] oldu\u011fu Sir [[William Rowan Hamilton]] taraf\u0131ndan tan\u0131t\u0131lan [[d\u00f6rdey]]ler '''H''', \u00e7arpman\u0131n ek olarak de\u011fi\u015fmeli olmad\u0131\u011f\u0131 [[oktoniyon]]lar ve \u00e7arpman\u0131n ne [[Alternatif cebir</ins>|<ins class=\"diffchange diffchange-inline\">alternatif]], ne de de\u011fi\u015fmeli oldu\u011fu </ins>[[<ins class=\"diffchange diffchange-inline\">sediyon</ins>]]<ins class=\"diffchange diffchange-inline\">lar dahildir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Transfinite say\u0131lar===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Sonsuz [[k\u00fcme (matematik)</ins>|<ins class=\"diffchange diffchange-inline\">k\u00fcmelerle]] ba\u015fa \u00e7\u0131kmak i\u00e7in, do\u011fal say\u0131lar </ins>[[<ins class=\"diffchange diffchange-inline\">ard\u0131\u015f\u0131k </ins>say\u0131]]<ins class=\"diffchange diffchange-inline\">lar ve </ins>[[<ins class=\"diffchange diffchange-inline\">kardinal say\u0131]]lar olarak genelle\u015ftirilmi\u015ftir. \u0130lki k\u00fcmenin s\u0131ralamas\u0131n\u0131 verirken, ikincisi boyutunu verir. Sonlu k\u00fcmeler i\u00e7in, hem s\u0131ral\u0131 hem de kardinal say\u0131lar do\u011fal say\u0131larla \u00f6zde\u015fle\u015ftirilir. Sonsuz durumda, bir\u00e7ok s\u0131ral\u0131 say\u0131 ayn\u0131 kardinal say\u0131ya kar\u015f\u0131l\u0131k gelir.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Standart olmayan </ins>say\u0131lar<ins class=\"diffchange diffchange-inline\">===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Hiperger\u00e7ek say\u0131</ins>]]<ins class=\"diffchange diffchange-inline\">lar, </ins>[[<ins class=\"diffchange diffchange-inline\">standart olmayan analiz]]de kullan\u0131l\u0131r. Hiperger\u00e7ekler veya standart olmayan ger\u00e7ekler </ins>(<ins class=\"diffchange diffchange-inline\">genellikle *'''R''' olarak g\u00f6sterilir), [[reel </ins>say\u0131<ins class=\"diffchange diffchange-inline\">]]lar '''R''''nin s\u0131ral\u0131 alan\u0131n\u0131n uygun bir [[Alan geni\u015fletmesi</ins>|<ins class=\"diffchange diffchange-inline\">geni\u015fletmesi]] olan ve [[transfer ilkesi]]ni sa\u011flayan bir [[s\u0131ral\u0131 alan</ins>]]<ins class=\"diffchange diffchange-inline\">\u0131 ifade eder. Bu ilke, '''R''' hakk\u0131ndaki do\u011fru [[birinci dereceden mant\u0131k</ins>|<ins class=\"diffchange diffchange-inline\">birinci dereceden]] ifadelerin *'''R''' hakk\u0131nda do\u011fru birinci dereceden ifadeler olarak yeniden yorumlanmas\u0131na izin verir.</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">=== Geometri ===</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[S\u00fcperger\u00e7ek say\u0131</ins>|<ins class=\"diffchange diffchange-inline\">S\u00fcperger\u00e7ek]] ve [[s\u00fcrreel say\u0131]]lar, sonsuzk\u00fc\u00e7\u00fck say\u0131lar ve sonsuzb\u00fcy\u00fck say\u0131lar ekleyerek reel say\u0131lar\u0131 geni\u015fletir, ancak yine de </ins>[[<ins class=\"diffchange diffchange-inline\">alan </ins>(<ins class=\"diffchange diffchange-inline\">matematik</ins>)|<ins class=\"diffchange diffchange-inline\">alanlar</ins>]] <ins class=\"diffchange diffchange-inline\">olu\u015fturur.</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{Ana</del>|<del class=\"diffchange diffchange-inline\">Geometri}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>[[<del class=\"diffchange diffchange-inline\">Dosya:Triangles </del>(<del class=\"diffchange diffchange-inline\">spherical geometry</del>)<del class=\"diffchange diffchange-inline\">.jpg|k\u00fc\u00e7\u00fckresim</del>|<del class=\"diffchange diffchange-inline\">Bir k\u00fcrenin y\u00fczeyinde, \u00d6klid geometrisi yaln\u0131zca yakla\u015f\u0131k olarak do\u011frudur. Daha b\u00fcy\u00fck \u00f6l\u00e7eklerde \u00fc\u00e7genin a\u00e7\u0131lar\u0131n\u0131n toplam\u0131 180\u00b0'ye e\u015fit de\u011fildir.</del>]]</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Geometri, matemati\u011fin en eski dallar\u0131ndan biridir. [[Do\u011fru </del>(<del class=\"diffchange diffchange-inline\">geometri</del>)<del class=\"diffchange diffchange-inline\">|Do\u011frular]], </del>[[<del class=\"diffchange diffchange-inline\">a\u00e7\u0131</del>]]lar <del class=\"diffchange diffchange-inline\">ve </del>[[<del class=\"diffchange diffchange-inline\">daire</del>]]<del class=\"diffchange diffchange-inline\">ler gibi \u015fekillerle ilgili ampirik tariflerle ba\u015flad\u0131 ve esasen [</del>[<del class=\"diffchange diffchange-inline\">yer\u00f6l\u00e7\u00fcm]]\u00fcn\u00fcn ve </del>[<del class=\"diffchange diffchange-inline\">[mimari</del>]]<del class=\"diffchange diffchange-inline\">'nin ihtiya\u00e7lar\u0131 i\u00e7in geli\u015ftirildi ancak o zamandan beri di\u011fer bir\u00e7ok alt alana yay\u0131ld\u0131</del>.<ref name=<del class=\"diffchange diffchange-inline\">\"Straume_2014\"</del>><del class=\"diffchange diffchange-inline\">{{Akademik dergi kayna\u011f\u0131</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Say\u0131 </ins>(<ins class=\"diffchange diffchange-inline\">dilbilim</ins>) <ins class=\"diffchange diffchange-inline\">==</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |ba\u015fl\u0131k=A Survey of the Development of Geometry up to 1870</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>[[<ins class=\"diffchange diffchange-inline\">Dilbilim</ins>]] <ins class=\"diffchange diffchange-inline\">alan\u0131nda ''say\u0131''</ins>lar <ins class=\"diffchange diffchange-inline\">ya da ''say\u0131 adlar\u0131'', </ins>[[<ins class=\"diffchange diffchange-inline\">bi\u00e7imbilim</ins>]]<ins class=\"diffchange diffchange-inline\">sel (morfolojik) olarak ba\u011f\u0131ms\u0131z bir </ins>[[<ins class=\"diffchange diffchange-inline\">s\u00f6zc\u00fck</ins>]] <ins class=\"diffchange diffchange-inline\">kategorisidir</ins>.<ref name=<ins class=\"diffchange diffchange-inline\">Vardar</ins>><ins class=\"diffchange diffchange-inline\">Berke Vardar, A\u00e7\u0131klamal\u0131 Dilbilim Terimleri S\u00f6zl\u00fc\u011f\u00fc. \u0130stanbul: ABC Kitabevi. 2</ins>. <ins class=\"diffchange diffchange-inline\">bask\u0131: 1988</ins>.</ref></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |soyad\u0131=Straume |ad=Eldar</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |dergi=ePrint |tarih=September 2014</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | arxiv=1409</del>.<del class=\"diffchange diffchange-inline\">1140 |bibcode=2014arXiv1409</del>.<del class=\"diffchange diffchange-inline\">1140S }}</del></ref></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Temel yenilik eski Yunanlar taraf\u0131ndan [[Matematiksel ispat|kan\u0131tlar]] kavram\u0131n\u0131n getirilmesiydi ve her iddian\u0131n \"kan\u0131tlanmas\u0131\" gereklili\u011fi vard\u0131. \u00d6rne\u011fin iki uzunlu\u011fun e\u015fit oldu\u011funu [[\u00f6l\u00e7\u00fcm|\u00f6l\u00e7erek]] do\u011frulamak yeterli de\u011fildir. Uzunluklar\u0131n e\u015fit olup olmad\u0131klar\u0131 \u00f6nceden kabul edilmi\u015f sonu\u00e7lardan ([[teorem]]ler) ve birka\u00e7 temel ifadeden \u00e7\u0131kar\u0131m yap\u0131larak kan\u0131tlanmal\u0131d\u0131r. Temel ifadeler apa\u00e7\u0131k anla\u015f\u0131labilir olduklar\u0131ndan ([[varsay\u0131m]]lar) veya \u00e7al\u0131\u015fma konusu tan\u0131m\u0131n par\u00e7as\u0131 olduklar\u0131ndan ([[aksiyom]]lar) ispata tabi de\u011fildirler. T\u00fcm matemati\u011fin temelini olu\u015fturan bu ilke ilk olarak geometri i\u00e7in geli\u015ftirildi ve \u00d6klid taraf\u0131ndan M\u00d6 300 civar\u0131nda ''[[\u00d6klid'in Elementleri|Elementler]]'' adl\u0131 kitab\u0131nda sistemle\u015ftirildi.<ref>{{Kitap kayna\u011f\u0131</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>=== <ins class=\"diffchange diffchange-inline\">T\u00fcrk\u00e7ede say\u0131 t\u00fcrleri </ins>===</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |ba\u015fl\u0131k</del>=<del class=\"diffchange diffchange-inline\">The Foundations of Geometry</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* asal say\u0131lar (iki, \u00fc\u00e7, be\u015f, yedi .</ins>..<ins class=\"diffchange diffchange-inline\">)</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |ad</del>=<del class=\"diffchange diffchange-inline\">David |soyad\u0131</del>=<del class=\"diffchange diffchange-inline\">Hilbert |yazarba\u011f\u0131</del>=<del class=\"diffchange diffchange-inline\">David Hilbert |y\u0131l=1962</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* s\u0131ra say\u0131lar\u0131 (onuncu, y\u00fcz\u00fcnc\u00fc ...)</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |sayfa</del>=<del class=\"diffchange diffchange-inline\">1 |yay\u0131nc\u0131</del>=<del class=\"diffchange diffchange-inline\">Open Court Publishing Company</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* \u00fcle\u015ftirme say\u0131lar\u0131 (iki\u015fer, onar ...)</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | url=https://www</del>.<del class=\"diffchange diffchange-inline\">google</del>.<del class=\"diffchange diffchange-inline\">com/books/edition/The_Foundations_of_Geometry/0AA8AQAAMAAJ</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* kesir say\u0131lar\u0131 (be\u015fte bir .</ins>..<ins class=\"diffchange diffchange-inline\">)</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">}}</ref><ref>{{Kitap kayna\u011f\u0131</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |ba\u015fl\u0131k=Geometry: Euclid and Beyond</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |ad=Robin |soyad\u0131=Hartshorne |yazarba\u011f\u0131=Robin Hartshorne</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |sayfalar=9-13| isbn=9780387226767</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |yay\u0131nc\u0131=Springer New York |tarih=11 Kas\u0131m 2013</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | url=https://www</del>.<del class=\"diffchange diffchange-inline\">google</del>.<del class=\"diffchange diffchange-inline\">com/books/edition/Geometry_Euclid_and_Beyond/C5fSBwAAQBAJ?gbpv=1&pg=PA9</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">}}</ref></del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Ortaya \u00e7\u0131kan [[\u00d6klid geometrisi]] \u00d6klid d\u00fczleminde </del>(<del class=\"diffchange diffchange-inline\">[[\u0130ki boyutlu uzay|d\u00fczlem geometrisi]]) ve \u00fc\u00e7 boyutlu [[\u00d6klid uzay\u0131]]ndaki \u00e7izgilerden</del>, <del class=\"diffchange diffchange-inline\">[[d\u00fczlem (geometri</del>)<del class=\"diffchange diffchange-inline\">|d\u00fczlemlerden]] ve dairelerden [[Pergel ve \u00e7izgilik \u00e7izimleri|in\u015fa edilmi\u015f]] \u015fekillerin ve d\u00fczenlemelerinin incelenmesidir</del>.<ref name=<del class=\"diffchange diffchange-inline\">Straume_2014</del>/></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Say\u0131 s\u0131fat\u0131 ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Dilbilimde, say\u0131 kavram\u0131 i\u00e7eren s\u0131fatlara ''say\u0131 s\u0131fat\u0131'' denir </ins>(<ins class=\"diffchange diffchange-inline\">\u00f6rne\u011fin ''on y\u0131l, ikinci g\u00fcn, birer ki\u015fi'' dizimlerindeki ''on, ikinci</ins>, <ins class=\"diffchange diffchange-inline\">birer'' s\u00f6zc\u00fckleri</ins>).<ref name=<ins class=\"diffchange diffchange-inline\">Vardar</ins>/></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">\u00d6klid geometrisi, </del>[[<del class=\"diffchange diffchange-inline\">Ren\u00e9 Descartes</del>]]'<del class=\"diffchange diffchange-inline\">\u0131n </del>[<del class=\"diffchange diffchange-inline\">[Kartezyen koordinatlar</del>]<del class=\"diffchange diffchange-inline\">]\u0131 tan\u0131tt\u0131\u011f\u0131 17</del>. <del class=\"diffchange diffchange-inline\">y\u00fczy\u0131la kadar y\u00f6ntem veya kapsam de\u011fi\u015fikli\u011fi olmadan geli\u015ftirildi</del>. <del class=\"diffchange diffchange-inline\">Bu b\u00fcy\u00fck bir </del>[[<del class=\"diffchange diffchange-inline\">Paradigma de\u011fi\u015fimi|paradigma de\u011fi\u015fikli\u011fi</del>]] <del class=\"diffchange diffchange-inline\">idi</del>. <del class=\"diffchange diffchange-inline\">\u00c7\u00fcnk\u00fc </del>[[<del class=\"diffchange diffchange-inline\">Reel say\u0131lar|ger\u00e7ek say\u0131</del>]]<del class=\"diffchange diffchange-inline\">lar\u0131 </del>[[<del class=\"diffchange diffchange-inline\">Do\u011fru par\u00e7as\u0131</del>|<del class=\"diffchange diffchange-inline\">do\u011fru par\u00e7alar\u0131</del>]]<del class=\"diffchange diffchange-inline\">n\u0131n uzunluklar\u0131 olarak tan\u0131mlamak yerine (bkz. </del>[[<del class=\"diffchange diffchange-inline\">say\u0131 do\u011frusu</del>]]<del class=\"diffchange diffchange-inline\">)</del>, <del class=\"diffchange diffchange-inline\">noktalar\u0131n </del>''<del class=\"diffchange diffchange-inline\">koordinatlar\u0131n\u0131</del>'' <del class=\"diffchange diffchange-inline\">(say\u0131lar) kullanarak temsiline imkan verdi. Bu</del>, <del class=\"diffchange diffchange-inline\">ki\u015finin geometrik problemleri \u00e7\u00f6zmek i\u00e7in cebiri (ve daha sonra kalk\u00fcl\u00fcs\u00fc veya hesab\u0131) kullanmas\u0131na imkan verir. Bu</del>, <del class=\"diffchange diffchange-inline\">geometriyi iki yeni alt alana ay\u0131rd\u0131: tamamen geometrik y\u00f6ntemler kullanan sentetik geometri ve sistematik olarak koordinatlar\u0131 kullanan [[analitik geometri]]</del>.<del class=\"diffchange diffchange-inline\"><ref></del>{{<del class=\"diffchange diffchange-inline\">Kitap kayna\u011f\u0131</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Notlar ==</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |ba\u015fl\u0131k=</del>History of <del class=\"diffchange diffchange-inline\">Analytic Geometry</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Not listesi}}</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> </del>|<del class=\"diffchange diffchange-inline\">ad=Carl B</del>. <del class=\"diffchange diffchange-inline\">|soyad\u0131=Boyer |yazarba\u011f\u0131=Carl B. Boyer</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Kaynak\u00e7a==</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> |sayfalar=74-102| isbn=9780486154510</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">;Genel</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> </del>|<del class=\"diffchange diffchange-inline\">yay\u0131nc\u0131=Dover Publications </del>|<del class=\"diffchange diffchange-inline\">tarih=28 Haziran 2012</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* </ins>[[<ins class=\"diffchange diffchange-inline\">Tobias Dantzig</ins>]]<ins class=\"diffchange diffchange-inline\">, ''Number, the language of science; a critical survey written for the cultured non-mathematician'', New York, The Macmillan Company, 1930.{{ISBN?}}</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> | url=https://www.google.com/books/edition/History_of_Analytic_Geometry/2T4i5fXZbOYC?gbpv=1&pg</del>=<del class=\"diffchange diffchange-inline\">PA74 }}</ref></del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Erich Friedman, '</ins>'[<ins class=\"diffchange diffchange-inline\">http://www.stetson.edu/~efriedma/numbers.html What's special about this number?</ins>] <ins class=\"diffchange diffchange-inline\">{{Webar\u015fiv|url=https://web.archive.org/web/20180223062027/http://www2.stetson.edu/~efriedma/numbers</ins>.<ins class=\"diffchange diffchange-inline\">html |tarih=23 \u015eubat 2018 }}''</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Steven Galovich, ''Introduction to Mathematical Structures'', Harcourt Brace Javanovich, 1989, {{isbn|0-15-543468-3}}</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* </ins>[[<ins class=\"diffchange diffchange-inline\">Paul Halmos</ins>]]<ins class=\"diffchange diffchange-inline\">, ''Naive Set Theory'', Springer, 1974, {{isbn|0-387-90092-6}}</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* </ins>[[<ins class=\"diffchange diffchange-inline\">Morris Kline</ins>]]<ins class=\"diffchange diffchange-inline\">, ''Mathematical Thought from Ancient to Modern Times'', </ins>[[<ins class=\"diffchange diffchange-inline\">Oxford University Press]], 1990. {{isbn</ins>|<ins class=\"diffchange diffchange-inline\">978-0195061352}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Alfred North Whitehead</ins>]] <ins class=\"diffchange diffchange-inline\">and </ins>[[<ins class=\"diffchange diffchange-inline\">Bertrand Russell</ins>]], ''<ins class=\"diffchange diffchange-inline\">[[Principia Mathematica]]</ins>'' <ins class=\"diffchange diffchange-inline\">to *56</ins>, <ins class=\"diffchange diffchange-inline\">Cambridge University Press</ins>, <ins class=\"diffchange diffchange-inline\">1910</ins>.{{<ins class=\"diffchange diffchange-inline\">ISBN?}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Leo Cory, ''A Brief </ins>History of <ins class=\"diffchange diffchange-inline\">Numbers'', Oxford University Press, 2015, {{isbn</ins>|<ins class=\"diffchange diffchange-inline\">978-0-19-870259-7}}</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">; \u00d6zel</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{kaynak\u00e7a</ins>|<ins class=\"diffchange diffchange-inline\">2</ins>|<ins class=\"diffchange diffchange-inline\">refs</ins>=</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Analitik geometri, daireler ve do\u011frularla ilgili olmayan [[e\u011fri]]lerin \u00e7al\u0131\u015f\u0131lmas\u0131na izin verir</del>. <del class=\"diffchange diffchange-inline\">Bu t\u00fcr e\u011friler [[Fonksiyon grafi\u011fi</del>|<del class=\"diffchange diffchange-inline\">fonksiyonlar\u0131n grafi\u011fi]] olarak tan\u0131mlanabilir (\u00e7al\u0131\u015fmas\u0131 [[diferansiyel geometri]]'ye yol a\u00e7t\u0131)</del>. <del class=\"diffchange diffchange-inline\">Ayr\u0131ca kapal\u0131 denklemler, genellikle cebirsel denklemleri ([[cebirsel geometri]]'yi do\u011furan) olarak da tan\u0131mlanabilir</del>. <del class=\"diffchange diffchange-inline\">Analitik geometri ayr\u0131ca \u00fc\u00e7 boyuttan daha y\u00fcksek \u00d6klid uzaylar\u0131n\u0131 dikkate almay\u0131 m\u00fcmk\u00fcn k\u0131lar</del>.<ref <del class=\"diffchange diffchange-inline\">name=Straume_2014/</del>></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name=\"OUP_number\">{{Dergi kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k=number </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url=http://www.oed</ins>.<ins class=\"diffchange diffchange-inline\">com/view/Entry/129082 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|dergi=OED \u00c7evrimi\u00e7i </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|dil=en-GB </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yay\u0131nc\u0131=Oxford University Press </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|eri\u015fim-tarihi=16 May\u0131s 2017 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ar\u015fiv-url=https://web.archive</ins>.<ins class=\"diffchange diffchange-inline\">org/web/20181004081907/http://www</ins>.<ins class=\"diffchange diffchange-inline\">oed</ins>.<ins class=\"diffchange diffchange-inline\">com/view/Entry/129082</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ar\u015fiv-tarihi=4 Ekim 2018</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ins><<ins class=\"diffchange diffchange-inline\">/</ins>ref></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">19. y\u00fczy\u0131lda matematik\u00e7iler, paralel varsay\u0131m\u0131 izlemeyen [[\u00d6klid d\u0131\u015f\u0131 geometri]]leri ke\u015ffettiler. Bu varsay\u0131m\u0131n do\u011frulu\u011funu sorgulayarak, bu ke\u015ffin [[Matemati\u011fin temelleri]]ni ortaya \u00e7\u0131karmada [[Russel paradoksu]] ile birle\u015fti\u011fi g\u00f6r\u00fcld\u00fc. Krizin bu y\u00f6n\u00fc, aksiyomatik y\u00f6ntemi sistematik hale getirerek ve se\u00e7ilen aksiyomlar\u0131n do\u011frulu\u011funun matematiksel bir problem olmad\u0131\u011f\u0131n\u0131 benimseyerek \u00e7\u00f6z\u00fcld\u00fc.</del><ref name=\"<del class=\"diffchange diffchange-inline\">Kleiner_1991</del>\">{{<del class=\"diffchange diffchange-inline\">Akademik dergi </del>kayna\u011f\u0131|url=<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">archive</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">details/sim_mathematics-magazine_1991-12_64_5</del>/<del class=\"diffchange diffchange-inline\">page</del>/<del class=\"diffchange diffchange-inline\">291|ba\u015fl\u0131k=Rigor and Proof in Mathematics: A Historical Perspective|tarih=Aral\u0131k 1991|say\u0131=5|sayfalar=291-314</del>|dergi=<del class=\"diffchange diffchange-inline\">Mathematics Magazine</del>|yay\u0131nc\u0131=<del class=\"diffchange diffchange-inline\">Taylor & Francis, Ltd.</del>|<del class=\"diffchange diffchange-inline\">cilt</del>=<del class=\"diffchange diffchange-inline\">64</del>|<del class=\"diffchange diffchange-inline\">ad</del>=<del class=\"diffchange diffchange-inline\">Israel|soyad\u0131=Kleiner|doi=10.1080/0025570X.1991.11977625|yazarba\u011f\u0131=Israel Kleiner (matematik\u00e7i)|jstor=2690647}}</ref><ref>{{Akademik dergi kayna\u011f\u0131 |ba\u015fl\u0131k=Reconstructing the Unity of Mathematics circa 1900 |ad=David J. |soyad\u0131=Stump |dergi=Perspectives on Science |y\u0131l=1997 |cilt=5 |say\u0131=3 |sayfa=383 |doi=10.1162/posc_a_00532 | s2cid=117709681 </del>| url<del class=\"diffchange diffchange-inline\">=https://repository.usfca.edu/phil/10 |eri\u015fimtarihi=18 Aral\u0131k 2022 | ar\u015fivurl</del>=https://web.archive.org/web/<del class=\"diffchange diffchange-inline\">20221106142816</del>/https://<del class=\"diffchange diffchange-inline\">repository</del>.<del class=\"diffchange diffchange-inline\">usfca</del>.<del class=\"diffchange diffchange-inline\">edu/phil/10</del>/ <del class=\"diffchange diffchange-inline\">| ar\u015fivtarihi</del>=<del class=\"diffchange diffchange-inline\">6 Kas\u0131m 2022 | \u00f6l\u00fcurl</del>=<del class=\"diffchange diffchange-inline\">hay\u0131r }}</ref> Buna kar\u015f\u0131l\u0131k aksiyomatik y\u00f6ntem ya aksiyomlar\u0131 de\u011fi\u015ftirerek ya da [[Uzay (matematik)|uzay]]'\u0131n belirli d\u00f6n\u00fc\u015f\u00fcmleri alt\u0131nda [[de\u011fi\u015fmez]] olan \u00f6zellikleri dikkate alarak elde edilen \u00e7e\u015fitli geometrilerin incelenmesine imkan verir.<ref>{{MacTutor|class=HistTopics|id</del>=<del class=\"diffchange diffchange-inline\">Non-Euclidean_geometry|title=Non-Euclidean geometry</del>}}</ref></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ref name=\"<ins class=\"diffchange diffchange-inline\">OUP_2017</ins>\">{{<ins class=\"diffchange diffchange-inline\">Dergi </ins>kayna\u011f\u0131 \u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k=numeral </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|url=<ins class=\"diffchange diffchange-inline\">http</ins>://<ins class=\"diffchange diffchange-inline\">www.oed</ins>.<ins class=\"diffchange diffchange-inline\">com</ins>/<ins class=\"diffchange diffchange-inline\">view</ins>/<ins class=\"diffchange diffchange-inline\">Entry</ins>/<ins class=\"diffchange diffchange-inline\">129111 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|dergi=<ins class=\"diffchange diffchange-inline\">OED </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|yay\u0131nc\u0131=<ins class=\"diffchange diffchange-inline\">Oxford University Press </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">eri\u015fim-tarihi</ins>=<ins class=\"diffchange diffchange-inline\">16 May\u0131s 2017 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ar\u015fiv-tarihi</ins>=<ins class=\"diffchange diffchange-inline\">30 Temmuz 2022 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ar\u015fiv-</ins>url=https://web.archive.org/web/<ins class=\"diffchange diffchange-inline\">20220730095156</ins>/https://<ins class=\"diffchange diffchange-inline\">www</ins>.<ins class=\"diffchange diffchange-inline\">oed</ins>.<ins class=\"diffchange diffchange-inline\">com</ins>/<ins class=\"diffchange diffchange-inline\">start;jsessionid</ins>=<ins class=\"diffchange diffchange-inline\">B9929F0647C8EE5D4FDB3A3C1B2CA3C3?authRejection</ins>=<ins class=\"diffchange diffchange-inline\">true&url</ins>=<ins class=\"diffchange diffchange-inline\">%2Fview%2FEntry%2F129111 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>}}</ref></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">G\u00fcn\u00fcm\u00fczde geometrinin alt alanlar\u0131 \u015funlard\u0131r:</del><ref name=<del class=\"diffchange diffchange-inline\">MSC/</del>></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ref name=<ins class=\"diffchange diffchange-inline\">\"Matson_2017\"</ins>><ins class=\"diffchange diffchange-inline\">{{Haber kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* 16</del>. <del class=\"diffchange diffchange-inline\">y\u00fczy\u0131lda [[Girard Desargues]] taraf\u0131ndan tan\u0131t\u0131lan Projektif geometri, [[paralel]] \u00e7izgiler'in kesi\u015fti\u011fi sonsuzda noktalar ekleyerek \u00d6klid geometrisini b\u00fcy\u00fct\u00fcr. Bu, kesi\u015fen ve paralel \u00e7izgiler i\u00e7in i\u015flemleri birle\u015ftirerek klasik geometrinin bir\u00e7ok y\u00f6n\u00fcn\u00fc kolayla\u015ft\u0131r\u0131r</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url=https://www</ins>.<ins class=\"diffchange diffchange-inline\">scientificamerican</ins>.<ins class=\"diffchange diffchange-inline\">com/article/history-of-zero/ </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Afin geometri, [[paralel]]lik ile ilgili ve uzunluk kavram\u0131ndan ba\u011f\u0131ms\u0131z \u00f6zelliklerin incelenmesi.</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k=The Origin of Zero</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Diferansiyel geometri]], diferansiyel fonksiyonlar\u0131 kullan\u0131larak tan\u0131mlanan e\u011frilerin, y\u00fczeylerin ve bunlar\u0131n genellemelerinin incelenmesi</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|son=Matson </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[\u00c7ok katl\u0131</del>|<del class=\"diffchange diffchange-inline\">Manifold teorisi]], daha geni\u015f uzaya g\u00f6m\u00fcl\u00fc olmas\u0131 gerekmeyen \u015fekillerin incelenmesi</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ilk=John </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Riemann geometrisi]], e\u011fri uzaylarda mesafe \u00f6zelliklerinin incelenmesi</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|\u00e7al\u0131\u015fma=Scientific American </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Cebirsel geometri]], [[polinom]]lar kullan\u0131larak tan\u0131mlanan e\u011frilerin, y\u00fczeylerin ve bunlar\u0131n genellemelerinin incelenmesi</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|eri\u015fim-tarihi=16 May\u0131s 2017 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Topoloji]], [[Homotopi</del>|<del class=\"diffchange diffchange-inline\">s\u00fcrekli deformasyon]]lar alt\u0131nda tutulan \u00f6zelliklerin incelenmesi</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">** [[Cebirsel topoloji]], cebirsel y\u00f6ntemlerin, \u00f6zellikle homolojik cebirin topolojide kullan\u0131m\u0131</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ar\u015fiv-url=https://web.archive.org/web/20170826235655/https://www.scientificamerican.com/article/history-of-zero/ </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Ayr\u0131k geometri, geometride sonlu yap\u0131lanmalar\u0131n incelenmesi</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ar\u015fiv-tarihi=26 A\u011fustos 2017 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* D\u0131\u015fb\u00fckey geometri, \u00f6nemini optimizasyon uygulamalar\u0131ndan alan [[d\u0131\u015fb\u00fckey k\u00fcme]]lerin incelenmesi,</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Karma\u015f\u0131k geometri, ger\u00e7ek say\u0131lar\u0131n [[karma\u015f\u0131k say\u0131]]lar ile yer de\u011fi\u015ftirilmesiyle elde edilen geometri</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Cebirsel geometri]] </del>-- <del class=\"diffchange diffchange-inline\">[[Analitik geometri]] </del>-- <del class=\"diffchange diffchange-inline\">[[Diferansiyel geometri]] </del>-- <del class=\"diffchange diffchange-inline\">[[Diferansiyel topoloji]] -- [[Cebirsel topoloji]] -- [[Lineer cebir]] </del>--<del class=\"diffchange diffchange-inline\">[[Fraktal|Fraktal geometri]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name=\"Hodgkin_2005\">{{Kitap kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url=https://books.google.com/books?id=f6HlhlBuQUgC&pg=PA88 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k=A History of Mathematics: From Mesopotamia to Modernity </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|son=Hodgkin </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ilk=Luke</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|tarih=2 Haziran 2005</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yay\u0131nc\u0131=OUP Oxford</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|isbn=978</ins>-<ins class=\"diffchange diffchange-inline\">0</ins>-<ins class=\"diffchange diffchange-inline\">19</ins>-<ins class=\"diffchange diffchange-inline\">152383</ins>-<ins class=\"diffchange diffchange-inline\">0 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|sayfalar=85</ins>-<ins class=\"diffchange diffchange-inline\">88|dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|eri\u015fim</ins>-<ins class=\"diffchange diffchange-inline\">tarihi=16 May\u0131s 2017 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ar\u015fiv</ins>-<ins class=\"diffchange diffchange-inline\">url=https://web.archive.org/web/20190204012433/https://books.google.com/books?id=f6HlhlBuQUgC&pg=PA88 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ar\u015fiv</ins>-<ins class=\"diffchange diffchange-inline\">tarihi=4 \u015eubat 2019</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">:{| style</del>=\"<del class=\"diffchange diffchange-inline\">border:1px solid #ddd; text-align:center; margin: auto;</del>\" <del class=\"diffchange diffchange-inline\">cellspacing</del>=<del class=\"diffchange diffchange-inline\">\"15\"</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=\"<ins class=\"diffchange diffchange-inline\">Gilsdorf_2012</ins>\"<ins class=\"diffchange diffchange-inline\">>{{Kitap kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>| <del class=\"diffchange diffchange-inline\">[[Dosya:Illustration to Euclid's proof of the Pythagorean theorem</del>.<del class=\"diffchange diffchange-inline\">svg</del>|<del class=\"diffchange diffchange-inline\">96px]] || [[Dosya</del>:<del class=\"diffchange diffchange-inline\">Sine cosine plot</del>.<del class=\"diffchange diffchange-inline\">svg|96px]] || [[Dosya:Hyperbolic triangle</del>.<del class=\"diffchange diffchange-inline\">svg</del>|<del class=\"diffchange diffchange-inline\">96px]] || [[Dosya</del>:<del class=\"diffchange diffchange-inline\">Torus.svg</del>|<del class=\"diffchange diffchange-inline\">96px]] </del>|<del class=\"diffchange diffchange-inline\">| [[Dosya:Mandel zoom 07 satellite.jpg|96px]] </del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|soyad\u0131</ins>=<ins class=\"diffchange diffchange-inline\">Gilsdorf </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>|-</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ad=Thomas E</ins>. \u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>|<del class=\"diffchange diffchange-inline\">[[Geometri]] || [[Trigonometri]] || [[Diferansiyel geometri]] || [[Topoloji]] || [[Fraktal|Fraktal geometri]]</del>||</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">url=https</ins>:<ins class=\"diffchange diffchange-inline\">//books</ins>.<ins class=\"diffchange diffchange-inline\">google</ins>.<ins class=\"diffchange diffchange-inline\">com/books?id=IN8El-TTlSQC </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|</del>}</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ba\u015fl\u0131k=Introduction to cultural mathematics </ins>: <ins class=\"diffchange diffchange-inline\">with case studies in the Otomies and the Incas</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">tarih=2012</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">yay\u0131mc\u0131=Wiley</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">isbn=978-1-118-19416</ins>-<ins class=\"diffchange diffchange-inline\">4</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">yer=Hoboken, N.J.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">oclc=793103475</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>}<ins class=\"diffchange diffchange-inline\">}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>=== <del class=\"diffchange diffchange-inline\">Hesap </del>===</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=<ins class=\"diffchange diffchange-inline\">\"Restivo_1992\">{{Kitap kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Aritmetik]] -- [[Matematiksel analiz</del>|<del class=\"diffchange diffchange-inline\">Analiz]] </del>-- <del class=\"diffchange diffchange-inline\">[[T\u00fcrev]] </del>-- <del class=\"diffchange diffchange-inline\">[[Kesir</del>|<del class=\"diffchange diffchange-inline\">Kesirli hesap]] -- [[Fonksiyon]]lar -- [[Trigonometrik fonksiyonlar]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|soyad\u0131=Restivo </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ad=Sal P. </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url</ins>=<ins class=\"diffchange diffchange-inline\">https://books.google.com/books?id</ins>=<ins class=\"diffchange diffchange-inline\">V0RuCQAAQBAJ&q</ins>=<ins class=\"diffchange diffchange-inline\">Mathematics+in+Society+and+History </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k</ins>=<ins class=\"diffchange diffchange-inline\">Mathematics in society and history : sociological inquiries </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|tarih</ins>=<ins class=\"diffchange diffchange-inline\">1992 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">isbn=978</ins>-<ins class=\"diffchange diffchange-inline\">94</ins>-<ins class=\"diffchange diffchange-inline\">011</ins>-<ins class=\"diffchange diffchange-inline\">2944</ins>-<ins class=\"diffchange diffchange-inline\">2</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yer=Dordrecht</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|oclc=883391697</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{| style</del>=\"<del class=\"diffchange diffchange-inline\">border:1px solid #ddd; text-align:center; margin: auto;</del>\" <del class=\"diffchange diffchange-inline\">cellspacing</del>=<del class=\"diffchange diffchange-inline\">\"20\"</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=\"<ins class=\"diffchange diffchange-inline\">Ore_1988</ins>\"<ins class=\"diffchange diffchange-inline\">>{{Kitap kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>| <del class=\"diffchange diffchange-inline\">[[Dosya:Integral as region under curve.svg</del>|<del class=\"diffchange diffchange-inline\">96px]] || [[Dosya</del>:<del class=\"diffchange diffchange-inline\">Vector field</del>.<del class=\"diffchange diffchange-inline\">svg|96px]] || [[Dosya:N S Laminar</del>.<del class=\"diffchange diffchange-inline\">svg</del>|<del class=\"diffchange diffchange-inline\">96px]] </del>|| <del class=\"diffchange diffchange-inline\">[[Dosya:Limitcycle.svg|96px]] || [[Dosya:Lorenz attractor.svg|96px]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|soyad\u0131</ins>=<ins class=\"diffchange diffchange-inline\">Ore </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>|-</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ad=\u00d8ystein </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>| <del class=\"diffchange diffchange-inline\">[[Kalk\u00fcl\u00fcs]] </del>|| <del class=\"diffchange diffchange-inline\">[[Vekt\u00f6r hesab\u0131]]|| [[Diferansiyel denklem]]ler || [[Dinamik sistem]] || [[Kaos teorisi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">url=https</ins>:<ins class=\"diffchange diffchange-inline\">//books</ins>.<ins class=\"diffchange diffchange-inline\">google</ins>.<ins class=\"diffchange diffchange-inline\">com/books?id=Sl_6BPp7S0AC </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|</del>}</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ba\u015fl\u0131k=Number theory and its history</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">tarih=1988 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">yay\u0131mc\u0131=Dover </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">isbn=0</ins>-<ins class=\"diffchange diffchange-inline\">486-65620-9</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">yer=New York </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">oclc=17413345</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>}<ins class=\"diffchange diffchange-inline\">}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>=== <del class=\"diffchange diffchange-inline\">Temel matematiksel yap\u0131lar </del>===</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=<ins class=\"diffchange diffchange-inline\">\"Marshack_1971\">{{Kitap kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Monoid]] </del>-- <del class=\"diffchange diffchange-inline\">[[\u00d6bek (matematik)]] </del>-- [<del class=\"diffchange diffchange-inline\">[Halkalar]] -- [[Cisim (Cebir)]] -- [[Topolojik Uzaylar]] -- [[\u00c7okkatl\u0131]]lar -- [[Hilbert aksiyomlar\u0131]] -- [[S\u0131ralamalar]</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|soyad\u0131=Marshack </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ad</ins>=<ins class=\"diffchange diffchange-inline\">Alexander </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url</ins>=<ins class=\"diffchange diffchange-inline\">https://books.google.com/books?id</ins>=<ins class=\"diffchange diffchange-inline\">vbQ9AAAAIAAJ </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k</ins>=<ins class=\"diffchange diffchange-inline\">The roots of civilization; the cognitive beginnings of man's first art, symbol, and notation. </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|tarih</ins>=<ins class=\"diffchange diffchange-inline\">1971 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yay\u0131mc\u0131=McGraw</ins>-<ins class=\"diffchange diffchange-inline\">Hill </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|isbn=0</ins>-<ins class=\"diffchange diffchange-inline\">07</ins>-<ins class=\"diffchange diffchange-inline\">040535</ins>-<ins class=\"diffchange diffchange-inline\">2 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|bas\u0131m=</ins>[<ins class=\"diffchange diffchange-inline\">1. bask\u0131</ins>] \u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yer=New York</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|oclc=257105</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>=== <del class=\"diffchange diffchange-inline\">Temel matematiksel kavramlar =</del>==</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=<ins class=\"diffchange diffchange-inline\">\"Buffalo_2012\">{{web kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Cebir]] -- [[K\u00fcmeler]] -- [[Say\u0131]]lar -- [[Ba\u011f\u0131nt\u0131]]lar--[[Fonksiyon]]lar -- [[Limit]] -- [[S\u00fcreklilik]] -- [[T\u00fcrev ve T\u00fcrevlenebilirlik]] -- [[Analitik geometri]] -- [[\u0130ntegrallenebilirlik]] -- [[Dizey</del>|<del class=\"diffchange diffchange-inline\">Matris]] </del>--<del class=\"diffchange diffchange-inline\">[[Determinant]]lar -- [[E\u015fyap\u0131]] -- [[Homotopi]] -- [[\u0130yi-s\u0131ral\u0131l\u0131k ilkesi]] -- [[Say\u0131labilirlik]] -- [[Soyutluk]] -- [[Kesir</del>|<del class=\"diffchange diffchange-inline\">Oran]] </del>-<del class=\"diffchange diffchange-inline\">- [[Orant\u0131]] -- [[Polinom]] -- [[Perm\u00fctasyon]] -- [[Kombinasyon]] -- [[Logaritma]] -- [[Dizi (terim)</del>|<del class=\"diffchange diffchange-inline\">Diziler]] -- [[Seriler]] -- [[Lineer cebir]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url</ins>=<ins class=\"diffchange diffchange-inline\">http://www.math.buffalo.edu/mad/Ancient-Africa/mad_ancient_egyptpapyrus.html#berlin</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k</ins>=<ins class=\"diffchange diffchange-inline\">Egyptian Mathematical Papyri \u2013 Mathematicians of the African Diaspora </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yay\u0131mc\u0131</ins>=<ins class=\"diffchange diffchange-inline\">Math.buffalo.edu </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|eri\u015fim-tarihi</ins>=<ins class=\"diffchange diffchange-inline\">30 Ocak 2012 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ar\u015fiv</ins>-<ins class=\"diffchange diffchange-inline\">url=https://web.archive.org/web/20150407231917/http://www.math.buffalo.edu/mad/Ancient</ins>-<ins class=\"diffchange diffchange-inline\">Africa/mad_ancient_egyptpapyrus.html#berlin </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ar\u015fiv</ins>-<ins class=\"diffchange diffchange-inline\">tarihi=7 Nisan 2015 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>=== <del class=\"diffchange diffchange-inline\">Matemati\u011fin ana dallar\u0131 </del>===</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=<ins class=\"diffchange diffchange-inline\">\"Chrisomalis_2003\">{{Dergi kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Soyut cebir]] </del>-- <del class=\"diffchange diffchange-inline\">[[Say\u0131lar teorisi]] -- [[Cebirsel geometri]] -- [[Grup teorisi]] -- [[Matematiksel analiz</del>|<del class=\"diffchange diffchange-inline\">Analiz]] -- [[Topoloji]] -- [[Graf teorisi]] -- [[Genel cebir]] -- [[Kategori teorisi]] -- [[Matematiksel mant\u0131k]] -- [[T\u00fcrevsel denklemler]] -- [[K\u0131smi t\u00fcrevsel denklemler]] -- [[Olas\u0131l\u0131k]] -- [[Kompleks fonksiyonlar teorisi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|soyad\u0131=Chrisomalis </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ad=Stephen </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|tarih</ins>=<ins class=\"diffchange diffchange-inline\">1 Eyl\u00fcl 2003|ba\u015fl\u0131k</ins>=<ins class=\"diffchange diffchange-inline\">The Egyptian origin of the Greek alphabetic numerals</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url=https://archive.org/details/sim_antiquity_2003-09_77_297/page/485</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|dergi</ins>=<ins class=\"diffchange diffchange-inline\">Antiquity </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|cilt</ins>=<ins class=\"diffchange diffchange-inline\">77 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|say\u0131</ins>=<ins class=\"diffchange diffchange-inline\">297 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|sayfalar=485</ins>-<ins class=\"diffchange diffchange-inline\">96|doi=10.1017/S0003598X00092541 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|s2cid=160523072 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|issn=0003</ins>-<ins class=\"diffchange diffchange-inline\">598X</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">:</del>{| <del class=\"diffchange diffchange-inline\">style</del>=<del class=\"diffchange diffchange-inline\">\"border</del>:<del class=\"diffchange diffchange-inline\">1px solid #ddd; text</del>-<del class=\"diffchange diffchange-inline\">align:center; margin: auto;\" cellspacing</del>=<del class=\"diffchange diffchange-inline\">\"15\"</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name=\"Cengage_Learning2\">{</ins>{<ins class=\"diffchange diffchange-inline\">Kitap kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>| <del class=\"diffchange diffchange-inline\">[[Dosya</del>:<del class=\"diffchange diffchange-inline\">Elliptic curve simple.svg</del>|<del class=\"diffchange diffchange-inline\">96px]] </del>|| <del class=\"diffchange diffchange-inline\">[[Dosya:Rubik's cube.svg</del>|<del class=\"diffchange diffchange-inline\">96px]] </del>|| <del class=\"diffchange diffchange-inline\">[[Dosya:Group diagdram D6.svg</del>|<del class=\"diffchange diffchange-inline\">96px]] </del>|| <del class=\"diffchange diffchange-inline\">[[Dosya:6n-graf.svg</del>|<del class=\"diffchange diffchange-inline\">96px]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">url</ins>=<ins class=\"diffchange diffchange-inline\">https</ins>:<ins class=\"diffchange diffchange-inline\">//books.google.com/books?id=dOxl71w</ins>-<ins class=\"diffchange diffchange-inline\">jHEC&pg</ins>=<ins class=\"diffchange diffchange-inline\">PA192 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>|-</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ba\u015fl\u0131k=The Earth and Its Peoples</ins>: <ins class=\"diffchange diffchange-inline\">A Global History, Volume 1</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>| <del class=\"diffchange diffchange-inline\">[[Say\u0131lar teorisi]] </del>|| <del class=\"diffchange diffchange-inline\">[[Soyut cebir]] </del>|| <del class=\"diffchange diffchange-inline\">[[Grup teorisi]] </del>|| <del class=\"diffchange diffchange-inline\">[[Graf teorisi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">soyad\u01312=Crossley</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>|}</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ad2=Pamela </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">soyad\u01313=Headrick </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ad3=Daniel </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">soyad\u01314=Hirsch </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ad4=Steven</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">soyad\u01315=Johnson </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ad5=Lyman</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">yay\u0131mc\u0131=Cengage Learning</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">y\u0131l=2010 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">isbn=978-1</ins>-<ins class=\"diffchange diffchange-inline\">4390-8474-8 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">sayfa=192 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">al\u0131nt\u0131=Indian mathematicians invented the concept of zero and developed the \"Arabic\" numerals and system of place-value notation used in most parts of the world today.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ad1=Richard</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">soyad\u01311=Bulliet </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">eri\u015fim-tarihi=16 May\u0131s 2017</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ar\u015fiv-url=https://web.archive.org/web/20170128072424/https://books.google.com/books?id=dOxl71w-jHEC&pg=PA192 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ar\u015fiv-tarihi=28 Ocak 2017 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}</ins>}<ins class=\"diffchange diffchange-inline\"></ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>=== [<del class=\"diffchange diffchange-inline\">[Sonlu matematik]</del>] ===</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=<ins class=\"diffchange diffchange-inline\">\"Sunsite_2012\">{{web kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Kombinatorik]] </del>-- <del class=\"diffchange diffchange-inline\">[[Saf k\u00fcme teorisi]] -- [[Olas\u0131l\u0131k]] -- [[Hesap teorisi]] -- [[Sonlu matematik]] -- [[Kriptografi]] -- [[Graf teorisi]] -- [[Oyun teorisi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url</ins>=<ins class=\"diffchange diffchange-inline\">http://sunsite.utk.edu/math_archives/.http/hypermail/historia/apr99/0197.html </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k</ins>=<ins class=\"diffchange diffchange-inline\">Historia Matematica Mailing List Archive: Re: </ins>[<ins class=\"diffchange diffchange-inline\">HM</ins>] <ins class=\"diffchange diffchange-inline\">The Zero Story: a question </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yay\u0131mc\u0131</ins>=<ins class=\"diffchange diffchange-inline\">Sunsite.utk.edu </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|tarih</ins>=<ins class=\"diffchange diffchange-inline\">26 Nisan 1999|eri\u015fim-tarihi</ins>=<ins class=\"diffchange diffchange-inline\">30 Ocak 2012 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ar\u015fiv</ins>-<ins class=\"diffchange diffchange-inline\">url=https://web.archive.org/web/20120112073735/http://sunsite.utk.edu/math_archives/.http/hypermail/historia/apr99/0197.html </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ar\u015fiv</ins>-<ins class=\"diffchange diffchange-inline\">tarihi=12 Ocak 2012 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">:{| style</del>=\"<del class=\"diffchange diffchange-inline\">border:1px solid #ddd; text-align:center; margin: auto;</del>\" <del class=\"diffchange diffchange-inline\">cellspacing=\"15\"</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=\"<ins class=\"diffchange diffchange-inline\">George_1961</ins>\">{{<ins class=\"diffchange diffchange-inline\">Kitap kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">| <math</del>><del class=\"diffchange diffchange-inline\">\\begin</del>{<del class=\"diffchange diffchange-inline\">matrix} (1,2,3) & (1,3,2) \\\\ (2,1,3) & (2,3,1) \\\\ (3,1,2) & (3,2,1) \\end</del>{<del class=\"diffchange diffchange-inline\">matrix}</math> </del>|| <del class=\"diffchange diffchange-inline\">[[Dosya:DFAexample</del>.<del class=\"diffchange diffchange-inline\">svg</del>|<del class=\"diffchange diffchange-inline\">96px]] </del>|<del class=\"diffchange diffchange-inline\">| [[Dosya:Caesar3.svg|96px]] || [[Dosya:6n-graf.svg|96px]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">soyad\u0131=S\u00e1nchez </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>|<del class=\"diffchange diffchange-inline\">-</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ad=George I</ins>. \u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>| <del class=\"diffchange diffchange-inline\">[[Kombinatorik]] || [[Hesap teorisi]] || [[Kriptografi]] || [[Graf teorisi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ba\u015fl\u0131k=Arithmetic in Maya </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|</del>}</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">y\u0131l=1961 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">yer=Austin, Teksas</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>}<ins class=\"diffchange diffchange-inline\">}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">=== Uygulamal\u0131 matematik ===</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><<ins class=\"diffchange diffchange-inline\">ref name</ins>=\"<ins class=\"diffchange diffchange-inline\">Staszkow_2004</ins>\"><ins class=\"diffchange diffchange-inline\">{{Kitap kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Mekanik]] -- [[Say\u0131sal analiz]] -- [[Optimizasyon]] -- [[Olas\u0131l\u0131k]] -- [[\u0130statistik]] -- [[Finansal matematik]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">soyad\u0131=Staszkow </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><<del class=\"diffchange diffchange-inline\">gallery class</del>=\"<del class=\"diffchange diffchange-inline\">center</del>\"></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ad=Ronald </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Dosya:Gravitation space source.svg</del>|<del class=\"diffchange diffchange-inline\">[[Matematiksel fizik]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">yazar2=Robert Bradshaw </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Dosya:BernoullisLawDerivationDiagram.svg</del>|<del class=\"diffchange diffchange-inline\">[[Ak\u0131\u015fkanlar mekani\u011fi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k=The Mathematical Palettei (3</ins>. <ins class=\"diffchange diffchange-inline\">bask\u0131) </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Dosya:Composite trapezoidal rule illustration small.svg</del>|<del class=\"diffchange diffchange-inline\">[[Say\u0131sal analiz]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">yay\u0131mc\u0131=Brooks Cole</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Dosya:Maximum boxed</del>.<del class=\"diffchange diffchange-inline\">png</del>|<del class=\"diffchange diffchange-inline\">[[Optimizasyon]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">y\u0131l=2004</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Dosya:Two red dice 01.svg</del>|<del class=\"diffchange diffchange-inline\">[[Olas\u0131l\u0131k teorisi]]<br />[[Olas\u0131l\u0131k]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">sayfa=41 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Dosya:Oldfaithful3.png</del>|<del class=\"diffchange diffchange-inline\">[[\u0130statistik]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">isbn=0-534</ins>-<ins class=\"diffchange diffchange-inline\">40365</ins>-<ins class=\"diffchange diffchange-inline\">4</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Dosya:Market Data Index NYA on 20050726 202628 UTC.png</del>|<del class=\"diffchange diffchange-inline\">[[Finansal matematik]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Dosya:Arbitrary</del>-<del class=\"diffchange diffchange-inline\">gametree</del>-<del class=\"diffchange diffchange-inline\">solved.svg</del>|<del class=\"diffchange diffchange-inline\">[[Oyun teorisi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ins></<ins class=\"diffchange diffchange-inline\">ref</ins>></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div></<del class=\"diffchange diffchange-inline\">gallery</del>></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>=== <del class=\"diffchange diffchange-inline\">\u00dcnl\u00fc teoriler ve hipotezler </del>===</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=<ins class=\"diffchange diffchange-inline\">\"Smith_1958\">{{Kitap kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Fermat'n\u0131n son teoremi]] </del>-- <del class=\"diffchange diffchange-inline\">[[Riemann hipotezi]] </del>-<del class=\"diffchange diffchange-inline\">- [[S\u00fcreklilik hipotezi]] -- [[P e\u015fittir NP</del>|<del class=\"diffchange diffchange-inline\">P</del>=<del class=\"diffchange diffchange-inline\">NP]] -- [[Goldbach hipotezi]] -- [[G\u00f6del'in yetersizlik teoremi]] -- [[Poincar\u00e9 hipotezi]] -- [[Cantor'un diagonal y\u00f6ntemi]] -- [[Pisagor teoremi]] -- [[Merkezsel limit teoremi]] -- [[Hesab\u0131n temel teoremi]] -- [[\u0130kiz asallar hipotezi]] -- [[Cebirin temel teoremi]] -- [[Aritmeti\u011fin temel teoremi]] -- [[D\u00f6rt renk teoremi]] -- [[Zorn \u00f6nsav\u0131]] -- [[Fibonacci dizisi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|soyad\u0131</ins>=<ins class=\"diffchange diffchange-inline\">Smith </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ad</ins>=<ins class=\"diffchange diffchange-inline\">David Eugene</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k</ins>=<ins class=\"diffchange diffchange-inline\">History of Modern Mathematics </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yay\u0131mc\u0131</ins>=<ins class=\"diffchange diffchange-inline\">Dover Yay\u0131nlar\u0131 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|y\u0131l</ins>=<ins class=\"diffchange diffchange-inline\">1958</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|sayfa=259</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|isbn=0</ins>-<ins class=\"diffchange diffchange-inline\">486</ins>-<ins class=\"diffchange diffchange-inline\">20429</ins>-<ins class=\"diffchange diffchange-inline\">4</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil</ins>=<ins class=\"diffchange diffchange-inline\">\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>=== <del class=\"diffchange diffchange-inline\">Temeller ve y\u00f6ntemler ===</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=<ins class=\"diffchange diffchange-inline\">\"Khan_Academy_2022\">{{Web kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Matematik felsefesi]] </del>-- <del class=\"diffchange diffchange-inline\">[[Sezgici matematik]] </del>-- <del class=\"diffchange diffchange-inline\">[[Olu\u015fturmac\u0131 matematik]] </del>-- <del class=\"diffchange diffchange-inline\">[[Matemati\u011fin temelleri]] </del>-- <del class=\"diffchange diffchange-inline\">[[K\u00fcmeler teorisi]] </del>-- <del class=\"diffchange diffchange-inline\">[[Sembolik mant\u0131k]] -- [[Model teorisi]] -- [[Kategori teorisi]] -- [[Teorem ispatlama]] -- [[Mant\u0131k]] -- [[Tersine matematik]] </del>-</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k</ins>=<ins class=\"diffchange diffchange-inline\">Classical Greek culture (article)</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url</ins>=<ins class=\"diffchange diffchange-inline\">https://www.khanacademy.org/humanities/world</ins>-<ins class=\"diffchange diffchange-inline\">history/ancient</ins>-<ins class=\"diffchange diffchange-inline\">medieval/classical</ins>-<ins class=\"diffchange diffchange-inline\">greece/a/greek</ins>-<ins class=\"diffchange diffchange-inline\">culture </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|eri\u015fim</ins>-<ins class=\"diffchange diffchange-inline\">tarihi=4 May\u0131s 2022 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ar\u015fiv</ins>-<ins class=\"diffchange diffchange-inline\">tarihi=4 May\u0131s 2022 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ar\u015fiv</ins>-<ins class=\"diffchange diffchange-inline\">url=https://web.archive.org/web/20220504133917/https://www.khanacademy.org/humanities/world</ins>-<ins class=\"diffchange diffchange-inline\">history/ancient</ins>-<ins class=\"diffchange diffchange-inline\">medieval/classical</ins>-<ins class=\"diffchange diffchange-inline\">greece/a/greek</ins>-<ins class=\"diffchange diffchange-inline\">culture </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">:{| style</del>=\"<del class=\"diffchange diffchange-inline\">border:1px solid #ddd; text-align:center; margin: auto;</del>\" <del class=\"diffchange diffchange-inline\">cellspacing</del>=<del class=\"diffchange diffchange-inline\">\"15\"</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=\"<ins class=\"diffchange diffchange-inline\">Selin_2020</ins>\"<ins class=\"diffchange diffchange-inline\">>{{Kitap kayna\u011f\u0131</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>| <del class=\"diffchange diffchange-inline\"><math> p \\Rightarrow q \\,</math></del>|<del class=\"diffchange diffchange-inline\">| [[Dosya</del>:<del class=\"diffchange diffchange-inline\">Venn A intersect B.svg</del>|<del class=\"diffchange diffchange-inline\">176x176px]] </del>|| <del class=\"diffchange diffchange-inline\">[[Dosya:Commutative diagram for morphism.svg|135x135px]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|soyad\u0131</ins>=<ins class=\"diffchange diffchange-inline\">Selin </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>|-</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ad=Helaine </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>| <del class=\"diffchange diffchange-inline\">[[Matematiksel mant\u0131k]] || [[K\u00fcme]] || [[Kategori Teorisi]] ||</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ba\u015fl\u0131k=Mathematics across cultures</ins>: <ins class=\"diffchange diffchange-inline\">the history of non-Western mathematics </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">|</del>}</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">yay\u0131mc\u0131=Kluwer Akademik Yay\u0131nc\u0131lar</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">y\u0131l=2000</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">sayfa=451</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">isbn=0-7923-6481</ins>-<ins class=\"diffchange diffchange-inline\">3</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>}<ins class=\"diffchange diffchange-inline\">}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>== <del class=\"diffchange diffchange-inline\">Matematik yaz\u0131l\u0131mlar\u0131 </del>==</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=<ins class=\"diffchange diffchange-inline\">\"Frischer_1984\">{{Kitap kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{Ana</del>|<del class=\"diffchange diffchange-inline\">Matematik yaz\u0131l\u0131mlar\u0131</del>}}</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k=Harvard Studies in Classical Philology </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url=https://archive.org/details/harvardstudiesin0000drsh_b7k9</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|b\u00f6l\u00fcm=Horace and the Monuments: A New Interpretation of the Archytas ''Ode'' </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yazar=Bernard Frischer </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|edit\u00f6r=D.R. Shackleton Bailey</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|sayfa</ins>=<ins class=\"diffchange diffchange-inline\">[https://archive.org/details/harvardstudiesin0000drsh_b7k9/page/83 83]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yay\u0131mc\u0131</ins>=<ins class=\"diffchange diffchange-inline\">Harvard University Press</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|y\u0131l</ins>=<ins class=\"diffchange diffchange-inline\">1984</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|isbn=0-674-37935-7</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>}}<ins class=\"diffchange diffchange-inline\"></ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* Fx Draw</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name=\"Merriam-Webster_2019\">{{Web kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Macsyma]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url=http://www.merriam-webster.com/dictionary/natural%20number</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[MAP (dosya format\u0131)</del>|<del class=\"diffchange diffchange-inline\">MAP]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ba\u015fl\u0131k=natural number</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Maple (yaz\u0131l\u0131m)</del>|<del class=\"diffchange diffchange-inline\">Maple]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">\u00e7al\u0131\u015fma=Merriam-Webster.com </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* </del>[[<del class=\"diffchange diffchange-inline\">Math Type</del>]]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yay\u0131nc\u0131=</ins>[[<ins class=\"diffchange diffchange-inline\">Merriam-Webster</ins>]] \u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Mathcad]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|eri\u015fim-tarihi=4 Ekim 2014 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Mathematica]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ar\u015fiv-url=https://web.archive.org/web/20191213133201/https://www.merriam-webster.com/dictionary/natural%20number </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[MathML]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ar\u015fiv-tarihi=13 Aral\u0131k 2019</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matlab]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|dil=\u0130ngilizce</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Maxima]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Mupat]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[GeoGebra]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>=<del class=\"diffchange diffchange-inline\">= Ayr\u0131ca bak\u0131n\u0131z ==</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=<ins class=\"diffchange diffchange-inline\">\"Suppes_1972\"></ins>{{<ins class=\"diffchange diffchange-inline\">Kitap kayna\u011f\u0131 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>{{<del class=\"diffchange diffchange-inline\">S\u00fctunlu liste</del>|<del class=\"diffchange diffchange-inline\">3</del>|</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">son=Suppes</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Fields madalyas\u0131]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ilk=Patrick</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matemati\u011fin ana hatlar\u0131]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|ba\u015fl\u0131k=Axiomatic Set Theory </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematik \u00f6d\u00fclleri listesi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|yay\u0131nc\u0131=Courier Dover Publications </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* </del>[<del class=\"diffchange diffchange-inline\">[Matematik yar\u0131\u015fmalar\u0131n\u0131n listesi]</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|y\u0131l=1972 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematiksel sembollerin listesi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|sayfa=</ins>[<ins class=\"diffchange diffchange-inline\">https://archive.org/details/axiomaticsettheo00supp_0/page/1 1</ins>] \u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematiksel \u015fekillerin listesi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|isbn=0-486-61630-4 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematik konular\u0131n\u0131n listesi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|url=https://archive.org/details/axiomaticsettheo00supp_0/page/1 </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematik topluluklar\u0131 listesi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil</ins>=<ins class=\"diffchange diffchange-inline\">\u0130ngilizce</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematik tarihi konular\u0131n\u0131n listesi]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>}}<ins class=\"diffchange diffchange-inline\"></ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Fen, teknoloji, m\u00fchendislik ve matematik]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matemati\u011fin dallar\u0131]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematik e\u011fitimi]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematik felsefesi]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Ayr\u0131k matematik]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematik m\u00fchendisli\u011fi]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematik D\u00fcnyas\u0131]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Amerikan Matematik Toplulu\u011fu]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Uluslararas\u0131 Matematik Olimpiyat\u0131]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Sembolik matematik]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Antik M\u0131s\u0131r matemati\u011fi]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Pop\u00fcler matematik]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Encyclopedia of Mathematics</del>|<del class=\"diffchange diffchange-inline\">Matematik Ansiklopedisi]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematik hikayeleri]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [[Matematik tarih\u00e7ileri listesi]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel ekonomi]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel morfoloji]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel ve teorik biyoloji]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel psikoloji]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel safsata]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel sosyoloji]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel t\u00fcmevar\u0131m]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel model]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel oyun]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel tablolar]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel istatistik]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel yap\u0131]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel bulmaca]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel nesne]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematiksel ara\u00e7]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*[[Matematik tarihi]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">}}</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Kaynak\u00e7a =</del>=</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{kaynak\u00e7a</del>}}</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>== <del class=\"diffchange diffchange-inline\">D\u0131\u015f ba\u011flant\u0131lar ==</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><ref name</ins>=<ins class=\"diffchange diffchange-inline\">\"Weisstein_2020\">{{Web kayna\u011f\u0131</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://maycalistaylari.comu.edu.tr/lise1/sunumlar/konferans/Irfan_Siap_Matematik.pdf Toplum ve bilimler a\u00e7\u0131s\u0131ndan matematik] {{Webar\u015fiv</del>|<del class=\"diffchange diffchange-inline\">url</del>=<del class=\"diffchange diffchange-inline\">https://web</del>.<del class=\"diffchange diffchange-inline\">archive.org/web/20121114184317/http://maycalistaylari.comu.edu.tr/lise1/sunumlar/konferans//Irfan_Siap_Matematik.pdf </del>|<del class=\"diffchange diffchange-inline\">tarih</del>=<del class=\"diffchange diffchange-inline\">14 Kas\u0131m 2012 }}</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|son</ins>=<ins class=\"diffchange diffchange-inline\">Weisstein</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://web.iku.edu.tr/~eguzel/is.edu.tr-1/Matematik%20Felsefesi.htm Matematik Felsefesi] {{Webar\u015fiv</del>|url=https://<del class=\"diffchange diffchange-inline\">web</del>.<del class=\"diffchange diffchange-inline\">archive</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">web/20130403023713/http://web</del>.<del class=\"diffchange diffchange-inline\">iku.edu.tr/~eguzel/is.edu.tr</del>-<del class=\"diffchange diffchange-inline\">1/Matematik%20Felsefesi.htm </del>|<del class=\"diffchange diffchange-inline\">tarih</del>=<del class=\"diffchange diffchange-inline\">3 Nisan 2013 }}</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ilk</ins>=<ins class=\"diffchange diffchange-inline\">Eric W</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [https://web.archive.org/web/20121021040500/http://w2.anadolu.edu.tr/aos/kitap/IOLTP/2289/unite01.pdf A\u00e7\u0131k\u00f6\u011fretim- Matematik \u00f6\u011fretimi Hakk\u0131nda Bilgi]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ba\u015fl\u0131k</ins>=<ins class=\"diffchange diffchange-inline\">Repeating Decimal</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://www.baskent.edu.tr/~tkaracay/etudio/agora/math/MATogretimi.html Matematik \u00d6\u011fretimi Hakk\u0131nda] {{Webar\u015fiv</del>|<del class=\"diffchange diffchange-inline\">url</del>=<del class=\"diffchange diffchange-inline\">https://web.archive.org/web/20140712085233/http://www.baskent.edu.tr/~tkaracay/etudio/agora/math/MATogretimi.html </del>|<del class=\"diffchange diffchange-inline\">tarih</del>=<del class=\"diffchange diffchange-inline\">12 Temmuz 2014 }}</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|url=https://<ins class=\"diffchange diffchange-inline\">mathworld</ins>.<ins class=\"diffchange diffchange-inline\">wolfram</ins>.<ins class=\"diffchange diffchange-inline\">com</ins>/<ins class=\"diffchange diffchange-inline\">RepeatingDecimal</ins>.<ins class=\"diffchange diffchange-inline\">html</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [https://web.archive.org/web/20121021040502/http://w2.anadolu.edu.tr/aos/kitap/IOLTP/2289/unite02.pdf A\u00e7\u0131k\u00f6\u011fretim Matematik \u00d6\u011frenmek]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|eri\u015fim</ins>-<ins class=\"diffchange diffchange-inline\">tarihi=23 Temmuz 2020</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [http://www.biyolojiegitim.yyu.edu.tr/matpdf/modernmatnedir.PDF Modern Matematik] {{Webar\u015fiv</del>|url=https://web.archive.org/web/<del class=\"diffchange diffchange-inline\">20140825164401</del>/<del class=\"diffchange diffchange-inline\">http</del>://<del class=\"diffchange diffchange-inline\">www</del>.<del class=\"diffchange diffchange-inline\">biyolojiegitim</del>.<del class=\"diffchange diffchange-inline\">yyu.edu.tr</del>/<del class=\"diffchange diffchange-inline\">matpdf/modernmatnedir</del>.<del class=\"diffchange diffchange-inline\">PDF |tarih=25 A\u011fustos 2014 </del>}}</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">website</ins>=<ins class=\"diffchange diffchange-inline\">Wolfram MathWorld </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">dil</ins>=<ins class=\"diffchange diffchange-inline\">\u0130ngilizce</ins>|<ins class=\"diffchange diffchange-inline\">ar\u015fiv-tarihi</ins>=<ins class=\"diffchange diffchange-inline\">5 A\u011fustos 2020</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>|<ins class=\"diffchange diffchange-inline\">ar\u015fiv-</ins>url=https://web.archive.org/web/<ins class=\"diffchange diffchange-inline\">20200805170548</ins>/<ins class=\"diffchange diffchange-inline\">https</ins>://<ins class=\"diffchange diffchange-inline\">mathworld</ins>.<ins class=\"diffchange diffchange-inline\">wolfram</ins>.<ins class=\"diffchange diffchange-inline\">com</ins>/<ins class=\"diffchange diffchange-inline\">RepeatingDecimal</ins>.<ins class=\"diffchange diffchange-inline\">html</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>}}<ins class=\"diffchange diffchange-inline\"></ref></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"><!--Alt bilgi--></del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>}}</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{Yap\u0131sal bilimler altbilgisi</del>}}</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">{{Matematik-altdal}}</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Ayr\u0131ca bak\u0131n\u0131z==</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"><!--kategoriler--></del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Matematiksel sabit]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Karma\u015f\u0131k say\u0131lar]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[B\u00fcy\u00fckl\u00fck mertebesi]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Fiziksel sabit]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Fiziksel nicelik]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Basamak (matematik)|Basamak]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Asal say\u0131]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Skaler (matematik)|Skaler]]</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange\">{{say\u0131lar}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange\">{{Say\u0131lar teorisi}}</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><div>{{Otorite kontrol\u00fc}}</div></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><div>{{Otorite kontrol\u00fc}}</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>[[Kategori:<del class=\"diffchange diffchange-inline\">Matematik</del>| <del class=\"diffchange diffchange-inline\">]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>[[Kategori:<ins class=\"diffchange diffchange-inline\">Say\u0131lar</ins>|<ins class=\"diffchange diffchange-inline\">*</ins>]]</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Kategori:Formal bilimler]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Kategori:Matematik terimleri]]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Kategori:Ana madde konular\u0131</del>]]</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n"
}
}