Ortalama değer teoremi

testwiki sitesinden
20.17, 4 Haziran 2024 tarihinde imported>SpdyBot tarafından oluşturulmuş 1137 numaralı sürüm (Kaynakça: Bot: kaynak ve şablon dz. (hata bildir))
(fark) ← Önceki sürüm | Güncel sürüm (fark) | Sonraki sürüm → (fark)
Gezinti kısmına atla Arama kısmına atla
[ab] aralığında sürekli ve (ab) aralığında türevi tanımlı herhangi bir işlev için (ab) aralığında öyle bir c değeri vardır ki [ab] aralığının uç noktalarını birleştiren kiriş, c noktasındaki teğete koşut olur.

Şablon:Kalkülüs Kalkülüste ortalama değer kuramı, sürekli bir eğrinin üzerinde seçilen herhangi bir bölüm üzerinde, türevi (eğimi) bu bölümün "ortalama" türevine eşit (koşut) olan en az bir noktanın bulunduğunu belirtmektedir.[1] Geometrik olarak, verilen bir eğrinin en az bir noktasındaki teğet doğrusunun, eğrinin başlangıç ve bitiş uçlarını birleştiren doğruya paralel olacağını ifade eder. Kuram, fonksiyonların belirli aralıklar üzerindeki davranışlarına ilişkin genel çıkarımlar yapan kuramların kanıtlanmasında kullanılmaktadır.

Matematiksel bir ifade ile, eğer f(x), [ab] kapalı aralığında sürekli ve (ab) açık aralığında türevlenebilir bir fonksiyon ise, (ab) aralığında öyle bir c noktası vardır ki

f(c)=f(b)f(a)ba

olur.

Kuram, devinim olgusuyla koşut düşünüldüğünde daha iyi anlaşılacaktır. Bir saatte yüz kilometre yol alan bir aracın ortalama hızı 100 km/h'tir. Aracın bu ortalama hıza ulaşabilmesi için ya 100 km/h'lik sabit bir hıza sahip olması ya da yolun bir bölümünde daha yavaş kaldıysa yolun kalan bölümünde hızlanmış olması gerekmektedir (ya da bunun tam tersi). Ortalama değer kuramı, aracın yol boyunca en az bir kez tam olarak 100 km/h hızla yol aldığını vurgulamaktadır.

Ayrıca bakınız

Kaynakça

Şablon:Kaynakça

Dış bağlantılar

Şablon:Matematik-taslak

Şablon:Otorite kontrolü

  1. "Ortalama Değer Kuramı Şablon:Webarşiv", Michael Trott, Wolfram Demonstrations Project