Küresel harmoniklerin tablosu

testwiki sitesinden
19.14, 16 Ekim 2024 tarihinde imported>İmmortalance tarafından oluşturulmuş 1720 numaralı sürüm (Gerçek küresel harmonikler: yazım hatası ve genel düzenlemeler, yazış şekli: n,k → n, k)
(fark) ← Önceki sürüm | Güncel sürüm (fark) | Sonraki sürüm → (fark)
Gezinti kısmına atla Arama kısmına atla

Şablon:Düzenle Bu bir Küresel harmonikler ortonormalize tablosudur ve Bu Condon-Shortley fazı l = 10 dereceye kadar sağlanır.Bazen bu formüllerin "Kartezyen" yorumu verilir.Bu varsayım x, y, z ve r Kartezyen-e-küresel koordinat dönüşümü yoluyla θ ve φ ye ilişkindir:

x=rsinθcosφy=rsinθsinφz=rcosθ

Küresel harmonikler

Burada dikkat çekmesi gereken nokta iki değişkenli fonksiyonların bir yüzeye karşılık geldiğidir.Yani bu harmonikler küre içinde farklı farklı yüzeylerin dalgalanmaları olacaktır

l = 0[1]

Y00(θ,φ)=121π

l = 1[1]

Y11(θ,φ)=1232πeiφsinθ=1232π(xiy)rY10(θ,φ)=123πcosθ=123πzrY11(θ,φ)=1232πeiφsinθ=1232π(x+iy)r

l = 2[1]

Y22(θ,φ)=14152πe2iφsin2θ=14152π(xiy)2r2
Y21(θ,φ)=12152πeiφsinθcosθ=12152π(xiy)zr2
Y20(θ,φ)=145π(3cos2θ1)=145π(2z2x2y2)r2
Y21(θ,φ)=12152πeiφsinθcosθ=12152π(x+iy)zr2
Y22(θ,φ)=14152πe2iφsin2θ=14152π(x+iy)2r2

l = 3[1]

Y33(θ,φ)=1835πe3iφsin3θ=1835π(xiy)3r3
Y32(θ,φ)=141052πe2iφsin2θcosθ=141052π(xiy)2zr3
Y31(θ,φ)=1821πeiφsinθ(5cos2θ1)=1821π(xiy)(4z2x2y2)r3
Y30(θ,φ)=147π(5cos3θ3cosθ)=147πz(2z23x23y2)r3
Y31(θ,φ)=1821πeiφsinθ(5cos2θ1)=1821π(x+iy)(4z2x2y2)r3
Y32(θ,φ)=141052πe2iφsin2θcosθ=141052π(x+iy)2zr3
Y33(θ,φ)=1835πe3iφsin3θ=1835π(x+iy)3r3

l = 4[1]

Y44(θ,φ)=316352πe4iφsin4θ=316352π(xiy)4r4
Y43(θ,φ)=3835πe3iφsin3θcosθ=3835π(xiy)3zr4
Y42(θ,φ)=3852πe2iφsin2θ(7cos2θ1)=3852π(xiy)2(7z2r2)r4
Y41(θ,φ)=385πeiφsinθ(7cos3θ3cosθ)=385π(xiy)z(7z23r2)r4
Y40(θ,φ)=3161π(35cos4θ30cos2θ+3)=3161π(35z430z2r2+3r4)r4
Y41(θ,φ)=385πeiφsinθ(7cos3θ3cosθ)=385π(x+iy)z(7z23r2)r4
Y42(θ,φ)=3852πe2iφsin2θ(7cos2θ1)=3852π(x+iy)2(7z2r2)r4
Y43(θ,φ)=3835πe3iφsin3θcosθ=3835π(x+iy)3zr4
Y44(θ,φ)=316352πe4iφsin4θ=316352π(x+iy)4r4

l = 5[1]

Y55(θ,φ)=33277πe5iφsin5θ
Y54(θ,φ)=3163852πe4iφsin4θcosθ
Y53(θ,φ)=132385πe3iφsin3θ(9cos2θ1)
Y52(θ,φ)=1811552πe2iφsin2θ(3cos3θcosθ)
Y51(θ,φ)=1161652πeiφsinθ(21cos4θ14cos2θ+1)
Y50(θ,φ)=11611π(63cos5θ70cos3θ+15cosθ)
Y51(θ,φ)=1161652πeiφsinθ(21cos4θ14cos2θ+1)
Y52(θ,φ)=1811552πe2iφsin2θ(3cos3θcosθ)
Y53(θ,φ)=132385πe3iφsin3θ(9cos2θ1)
Y54(θ,φ)=3163852πe4iφsin4θcosθ
Y55(θ,φ)=33277πe5iφsin5θ

l = 6

Y66(θ,φ)=1643003πe6iφsin6θ
Y65(θ,φ)=3321001πe5iφsin5θcosθ
Y64(θ,φ)=332912πe4iφsin4θ(11cos2θ1)
Y63(θ,φ)=1321365πe3iφsin3θ(11cos3θ3cosθ)
Y62(θ,φ)=1641365πe2iφsin2θ(33cos4θ18cos2θ+1)
Y61(θ,φ)=1162732πeiφsinθ(33cos5θ30cos3θ+5cosθ)
Y60(θ,φ)=13213π(231cos6θ315cos4θ+105cos2θ5)
Y61(θ,φ)=1162732πeiφsinθ(33cos5θ30cos3θ+5cosθ)
Y62(θ,φ)=1641365πe2iφsin2θ(33cos4θ18cos2θ+1)
Y63(θ,φ)=1321365πe3iφsin3θ(11cos3θ3cosθ)
Y64(θ,φ)=332912πe4iφsin4θ(11cos2θ1)
Y65(θ,φ)=3321001πe5iφsin5θcosθ
Y66(θ,φ)=1643003πe6iφsin6θ

l = 7

Y77(θ,φ)=3647152πe7iφsin7θ
Y76(θ,φ)=3645005πe6iφsin6θcosθ
Y75(θ,φ)=3643852πe5iφsin5θ(13cos2θ1)
Y74(θ,φ)=3323852πe4iφsin4θ(13cos3θ3cosθ)
Y73(θ,φ)=364352πe3iφsin3θ(143cos4θ66cos2θ+3)
Y72(θ,φ)=36435πe2iφsin2θ(143cos5θ110cos3θ+15cosθ)
Y71(θ,φ)=1641052πeiφsinθ(429cos6θ495cos4θ+135cos2θ5)
Y70(θ,φ)=13215π(429cos7θ693cos5θ+315cos3θ35cosθ)
Y71(θ,φ)=1641052πeiφsinθ(429cos6θ495cos4θ+135cos2θ5)
Y72(θ,φ)=36435πe2iφsin2θ(143cos5θ110cos3θ+15cosθ)
Y73(θ,φ)=364352πe3iφsin3θ(143cos4θ66cos2θ+3)
Y74(θ,φ)=3323852πe4iφsin4θ(13cos3θ3cosθ)
Y75(θ,φ)=3643852πe5iφsin5θ(13cos2θ1)
Y76(θ,φ)=3645005πe6iφsin6θcosθ
Y77(θ,φ)=3647152πe7iφsin7θ

l = 8

Y88(θ,φ)=3256121552πe8iφsin8θ
Y87(θ,φ)=364121552πe7iφsin7θcosθ
Y86(θ,φ)=11287293πe6iφsin6θ(15cos2θ1)
Y85(θ,φ)=364170172πe5iφsin5θ(5cos3θcosθ)
Y84(θ,φ)=312813092πe4iφsin4θ(65cos4θ26cos2θ+1)
Y83(θ,φ)=164196352πe3iφsin3θ(39cos5θ26cos3θ+3cosθ)
Y82(θ,φ)=3128595πe2iφsin2θ(143cos6θ143cos4θ+33cos2θ1)
Y81(θ,φ)=364172πeiφsinθ(715cos7θ1001cos5θ+385cos3θ35cosθ)
Y80(θ,φ)=125617π(6435cos8θ12012cos6θ+6930cos4θ1260cos2θ+35)
Y81(θ,φ)=364172πeiφsinθ(715cos7θ1001cos5θ+385cos3θ35cosθ)
Y82(θ,φ)=3128595πe2iφsin2θ(143cos6θ143cos4θ+33cos2θ1)
Y83(θ,φ)=164196352πe3iφsin3θ(39cos5θ26cos3θ+3cosθ)
Y84(θ,φ)=312813092πe4iφsin4θ(65cos4θ26cos2θ+1)
Y85(θ,φ)=364170172πe5iφsin5θ(5cos3θcosθ)
Y86(θ,φ)=11287293πe6iφsin6θ(15cos2θ1)
Y87(θ,φ)=364121552πe7iφsin7θcosθ
Y88(θ,φ)=3256121552πe8iφsin8θ

l = 9

Y99(θ,φ)=1512230945πe9iφsin9θ
Y98(θ,φ)=32562309452πe8iφsin8θcosθ
Y97(θ,φ)=351213585πe7iφsin7θ(17cos2θ1)
Y96(θ,φ)=112840755πe6iφsin6θ(17cos3θ3cosθ)
Y95(θ,φ)=32562717πe5iφsin5θ(85cos4θ30cos2θ+1)
Y94(θ,φ)=3128950952πe4iφsin4θ(17cos5θ10cos3θ+cosθ)
Y93(θ,φ)=125621945πe3iφsin3θ(221cos6θ195cos4θ+39cos2θ1)
Y92(θ,φ)=31281045πe2iφsin2θ(221cos7θ273cos5θ+91cos3θ7cosθ)
Y91(θ,φ)=3256952πeiφsinθ(2431cos8θ4004cos6θ+2002cos4θ308cos2θ+7)
Y90(θ,φ)=125619π(12155cos9θ25740cos7θ+18018cos5θ4620cos3θ+315cosθ)
Y91(θ,φ)=3256952πeiφsinθ(2431cos8θ4004cos6θ+2002cos4θ308cos2θ+7)
Y92(θ,φ)=31281045πe2iφsin2θ(221cos7θ273cos5θ+91cos3θ7cosθ)
Y93(θ,φ)=125621945πe3iφsin3θ(221cos6θ195cos4θ+39cos2θ1)
Y94(θ,φ)=3128950952πe4iφsin4θ(17cos5θ10cos3θ+cosθ)
Y95(θ,φ)=32562717πe5iφsin5θ(85cos4θ30cos2θ+1)
Y96(θ,φ)=112840755πe6iφsin6θ(17cos3θ3cosθ)
Y97(θ,φ)=351213585πe7iφsin7θ(17cos2θ1)
Y98(θ,φ)=32562309452πe8iφsin8θcosθ
Y99(θ,φ)=1512230945πe9iφsin9θ

l = 10

Y1010(θ,φ)=11024969969πe10iφsin10θ
Y109(θ,φ)=15124849845πe9iφsin9θcosθ
Y108(θ,φ)=15122552552πe8iφsin8θ(19cos2θ1)
Y107(θ,φ)=351285085πe7iφsin7θ(19cos3θ3cosθ)
Y106(θ,φ)=310245005πe6iφsin6θ(323cos4θ102cos2θ+3)
Y105(θ,φ)=32561001πe5iφsin5θ(323cos5θ170cos3θ+15cosθ)
Y104(θ,φ)=325650052πe4iφsin4θ(323cos6θ255cos4θ+45cos2θ1)
Y103(θ,φ)=32565005πe3iφsin3θ(323cos7θ357cos5θ+105cos3θ7cosθ)
Y102(θ,φ)=35123852πe2iφsin2θ(4199cos8θ6188cos6θ+2730cos4θ364cos2θ+7)
Y101(θ,φ)=125611552πeiφsinθ(4199cos9θ7956cos7θ+4914cos5θ1092cos3θ+63cosθ)
Y100(θ,φ)=151221π(46189cos10θ109395cos8θ+90090cos6θ30030cos4θ+3465cos2θ63)
Y101(θ,φ)=125611552πeiφsinθ(4199cos9θ7956cos7θ+4914cos5θ1092cos3θ+63cosθ)
Y102(θ,φ)=35123852πe2iφsin2θ(4199cos8θ6188cos6θ+2730cos4θ364cos2θ+7)
Y103(θ,φ)=32565005πe3iφsin3θ(323cos7θ357cos5θ+105cos3θ7cosθ)
Y104(θ,φ)=325650052πe4iφsin4θ(323cos6θ255cos4θ+45cos2θ1)
Y105(θ,φ)=32561001πe5iφsin5θ(323cos5θ170cos3θ+15cosθ)
Y106(θ,φ)=310245005πe6iφsin6θ(323cos4θ102cos2θ+3)
Y107(θ,φ)=351285085πe7iφsin7θ(19cos3θ3cosθ)
Y108(θ,φ)=15122552552πe8iφsin8θ(19cos2θ1)
Y109(θ,φ)=15124849845πe9iφsin9θcosθ
Y1010(θ,φ)=11024969969πe10iφsin10θ

Gerçek küresel harmonikler

Her Gerçek küresel harmonik için, karşılık gelen (s, p, d, f, g) atomik orbital sembolü de bildirilmektedir.

l = 0[2][3]

Y00=s=Y00=121π

l = 1[2][3]

Y1,1=py=i12(Y11+Y11)=34πyrY10=pz=Y10=34πzrY11=px=12(Y11Y11)=34πxr

l = 2[2][3]

Y2,2=dxy=i12(Y22Y22)=1215πxyr2Y2,1=dyz=i12(Y21+Y21)=1215πyzr2Y20=dz2=Y20=145πx2y2+2z2r2Y21=dxz=12(Y21Y21)=1215πzxr2Y22=dx2y2=12(Y22+Y22)=1415πx2y2r2

l = 3[2]

Y3,3=fy(3x2y2)=i12(Y33+Y33)=14352π(3x2y2)yr3Y3,2=fxyz=i12(Y32Y32)=12105πxyzr3Y3,1=fyz2=i12(Y31+Y31)=14212πy(4z2x2y2)r3Y30=fz3=Y30=147πz(2z23x23y2)r3Y31=fxz2=12(Y31Y31)=14212πx(4z2x2y2)r3Y32=fz(x2y2)=12(Y32+Y32)=14105π(x2y2)zr3Y33=fx(x23y2)=12(Y33Y33)=14352π(x23y2)xr3

l = 4

Y4,4=gxy(x2y2)=i12(Y44Y44)=3435πxy(x2y2)r4Y4,3=gzy3=i12(Y43+Y43)=34352π(3x2y2)yzr4Y4,2=gz2xy=i12(Y42Y42)=345πxy(7z2r2)r4Y4,1=gz3y=i12(Y41+Y41)=3452πyz(7z23r2)r4Y40=gz4=Y40=3161π(35z430z2r2+3r4)r4Y41=gz3x=12(Y41Y41)=3452πxz(7z23r2)r4Y42=gz2xy=12(Y42+Y42)=385π(x2y2)(7z2r2)r4Y43=gzx3=12(Y43Y43)=34352π(x23y2)xzr4Y44=gx4+y4=12(Y44+Y44)=31635πx2(x23y2)y2(3x2y2)r4

Ayrıca bakınız

Dış bağlantılar

Kaynakça

Cite kaynakça

Şablon:Kaynakça

Genel kaynakça
  • See section 3 in Şablon:Dergi kaynağı (see section 3.3)
  • For complex spherical harmonics, see also Şablon:Webarşiv SphericalHarmonicY[l,m,theta,phi] at Wolfram Alpha, especially for specific values of l and m.