Hankel dönüşümü

testwiki sitesinden
13.12, 20 Mayıs 2024 tarihinde imported>SpdyBot tarafından oluşturulmuş 2379 numaralı sürüm (Kaynakça: Bot: kaynak dz. (hata bildir))
(fark) ← Önceki sürüm | Güncel sürüm (fark) | Sonraki sürüm → (fark)
Gezinti kısmına atla Arama kısmına atla

Matematikte Hankel dönüşümü, diğer adıyla Fourier–Bessel dönüşümü, herhangi bir f(r) fonksiyonunu sonsuz sayıda birinci tip Bessel fonksiyonlarının Şablon:Math oranlı toplamı olarak gösterir. Bu dönüşümde ortogonal temeli oluşturan Bessel fonksiyonlarının hepsi aynı ν mertebesindedir. Bu integral dönüşümü ilk kez matematikçi Hermann Hankel tarafından tasvir edilmiştir. Formülü ve ters dönüşümü sırasıyla şu şekilde verilebilir:[1]

Fν(k)=0f(r)Jν(kr)rdr
f(r)=0Fν(k)Jν(kr)kdk

Fourier dönüşümü ile Fourier serisi arasındaki ilişkinin benzeri Hankel dönüşümü ile Fourier-Bessel serisi arasında da vardır. Hankel dönüşümü iki boyutlu Fourier dönüşümünün dairesel olarak simetrik bir versiyonu olarak düşünülebilir; bu nedenle bu dönüşüm fizik ve mühendislikte silindirik veya dairesel simetrinin bulunduğu birçok problemde kullanılır.[2][3]

Dönüşüm tablosu

Bazı yaygın Hankel dönüşümleri şu şekilde gösterilebilir:[4]

f(r) F0(k)
1 δ(k)k
1r 1k
r 1k3
r3 9k5
rm 2m+1Γ(m2+1)km+2Γ(m2),2<(m)<12
1r2+z2 ek|z|k
1z2+r2 K0(kz),z𝐂
eiarr ia2k2,a>0,k<a
1k2a2,a>0,k>a
e12a2r2 1a2ek22a2
1rJ0(lr)esr 2π(k+l)2+s2K(4kl(k+l)2+s2)
r2f(r) d2F0dk2+1kdF0dk
f(r) Fν(k)
rs 2s+1ks+2Γ(12(2+ν+s))Γ(12(νs))
rν2sΓ(s,r2h) 12(k2)2sν2γ(1s+ν,k24h)
er2rνU(a,b,r2) Γ(2+νb)2Γ(2+νb+a)(k2)νek241F1(a,2+ab+ν,k24)
rnJμ(lr)esr Eliptik integraller ile gösterilebilir.[5]
r2f(r) d2Fνdk2+1kdFνdkν2k2Fν

Ayrıca bakınız

Kaynakça

Şablon:Kaynakça

Şablon:Otorite kontrolü