Orta Çağ İslam matematiği

testwiki sitesinden
00.17, 27 Kasım 2024 tarihinde imported>Gezginruh tarafından oluşturulmuş 2423 numaralı sürüm (growthexperiments-addlink-summary-summary:3|0|0)
(fark) ← Önceki sürüm | Güncel sürüm (fark) | Sonraki sürüm → (fark)
Gezinti kısmına atla Arama kısmına atla
Şablon:Ortala

İslam'ın Altın Çağı'nda matematik, özellikle 9. ve 10. yüzyıllarda, Yunan matematiği (Öklid, Arşimet, Apollonius) ve Hint matematiği (Aryabhata, Brahmagupta) üzerine inşa edilmiştir. Ondalık basamak-değer sisteminin ondalık kesirleri içerecek şekilde tam olarak geliştirilmesi, ilk sistematik cebir çalışması (Hârizmî tarafından yazılan Cebir ve Denklem Hesabı Üzerine Özet Kitap (Şablon:Dil, Şablon:Dil) adlı eser ve geometri ve trigonometride önemli ilerlemeler kaydedilmiştir.[1]

Arap eserleri, aynı zamanda matematiğin 10. yüzyıldan 12. yüzyıla kadar Avrupa'ya aktarılmasında önemli bir rol oynadı.[2]

İslam bilim tarihçisi Dr. Sally P. Ragep, matematik bilimleri ve felsefe alanındaki "on binlerce" Arapça el yazmasının hala okunmadığını, "bireysel önyargıları yansıtan ve nispeten az sayıda metin ve bilim adamı ile sınırlı bir odaklanma" olduğunu tahmin ediyor.[3]

Kavramlar

Şablon:Ortala

Cebir

Şablon:Further

Adı tamamlama veya "kırık parçaların yeniden birleşmesi"[4] anlamına gelen Arapça kelimeden türetilen cebir ile ilgili çalışmalar, İslam'ın Altın Çağı'nda parladı ve gelişti. Bağdat'taki Beyt'ül Hikmet (House of Wisdom)'de bir alim olan Hârizmî, Yunan matematikçi Diophantus ile birlikte cebirin babası olarak bilinir. Harizmi, Cebir ve Denklem Hesabı Üzerine Özet Kitap (Şablon:Dil, Şablon:Dil) adlı kitabında, birinci ve ikinci derece (doğrusal ve ikinci dereceden) polinom denklemlerinin pozitif köklerini çözmenin yollarını ele alır. Ayrıca indirgeme yöntemini tanıtır ve Diophantus'un aksine, ilgilendiği denklemlere genel çözümler sunar.[5][6][7]

Harizmi'nin cebiri retorikti, yani denklemler tam cümlelerle yazılmıştı. Bu, Diophantus'un aksak ritimli cebirsel çalışmasından farklıydı, yani bazı semboller kullanıldı. Yalnızca sembollerin kullanıldığı sembolik cebire geçiş, İbnü’l-Bennâ el-Merrâküşî ve Ebu el-Hasan bin Ali el-Kalasadi'nın çalışmalarında görülebilir.[7][8]

J. J. O'Connor ve Edmund F. Robertson el-Hârizmî'nin çalışmaları hakkında:[9]

Şablon:Alıntı

şeklinde konuşmuşlardır.

Bu dönemde diğer birkaç matematikçi Harizmi'nin cebirini genişletti. Ebu Kamil Şüca bin Aslam, geometrik çizimler ve ispatlar eşliğinde bir cebir kitabı yazdı. Ayrıca bazı sorunlarının olası tüm çözümlerini de sıraladı. Muhammed bin Ahmed bin el-Layth, Ömer Hayyam, Şerafeddin el-Tusî ile birlikte kübik denklemin birkaç çözümünü buldu. Ömer Hayyam, kübik bir denklemin genel geometrik çözümünü buldu.

Kübik denklemler

Şablon:Ortala

Şablon:Daha fazla

Ömer Hayyam (yaklaşık 1038/48, İran - 1123/24)Şablon:Sfn Hârizmî'nin cebirinin ötesine geçen kübik veya üçüncü mertebeden denklemlerin sistematik çözümünü içeren Cebir Problemlerinin Gösterilmesi Üzerine İnceleme (Şablon:Dil) 'yi yazdı.Şablon:Sfn Hayyam, iki konik kesitin kesişme noktalarını bularak bu denklemlerin çözümlerini elde etti. Bu yöntem Yunanlar tarafından kullanılmıştıŞablon:Sfn ancak tüm denklemleri pozitif köklerle kapsayacak şekilde genelleştirmediler.Şablon:Sfn

Hayyam, "geometrik" ve "aritmetik" çözümleri birbirinden ayırdı.Şablon:Sfn Hayyam, hatalı olarakŞablon:Sfn aritmetik çözümlerin yalnızca denklem kökleri pozitif ve rasyonel sayı olması durumunda var olduğuna inanıyordu.Şablon:Sfn Hayyam, çözümlerin sayısal hesaplamalarıyla ilgilenmedi.Şablon:Sfn [not 1]

Şerafeddin el-Tusî (? Tus, İran - 1213/4) kübik denklemlerin incelenmesine, kübik bir polinomun maksimum değerini elde ettiği noktayı bulmayı gerektiren yeni bir yaklaşım geliştirdi. Örneğin, a ve b pozitif olan  x3+a=bx denklemini çözmek için,  y=bxx3 eğrisinin maksimum noktasını x=b3 konumunda bulunur ve o noktadaki eğrinin yüksekliğinin a'dan küçük, eşit veya daha büyük olmasına bağlı olarak denklemin hiçbir çözümü olmayacağını, bir çözümü veya iki çözümü olacağını söylemek mümkündür. Günümüze ulaşan çalışmaları, bu eğrilerin maksimumları için formüllerini nasıl keşfettiğine dair hiçbir ipucu vermemektedir. Bunları keşfetmesine dair açıklama getirmek için çeşitli varsayımlar öne sürülmüştür.[10]

Tümevarım

Şablon:Ayrıca bakınız

Matematiksel tümevarımın en eski örtük izleri Öklid'in asal sayıların sonsuz olduğunun kanıtı olarak geliştirdiği Öklid teoremi'nde bulunabilir (yaklaşık MÖ 300). Tümevarım ilkesinin ilk açık formülasyonu, Blaise Pascal tarafından 1665 yılında Aritmetik Üçgen üzerine inceleme (Şablon:Dil) adlı eserinde vermiştir.

Aritmetik diziler için tümevarım yoluyla örtük ispat ise Kerecî tarafından tanıtıldı (yaklaşık 1000) ve bunu binom teoreminin özel durumları ve Pascal üçgeninin özellikleri için kullanan Semev’el el-Mağribî tarafından devam ettirildi.

İrrasyonel sayılar

Şablon:Daha fazla

Yunanlar irrasyonel sayıları keşfetmişlerdi, ancak onlardan memnun değillerdi ve yalnızca "büyüklük" ve "sayı" arasında bir ayrım yaparak irrasyonel sayılarla başa çıkabildiler. Yunan görüşünde, "büyüklükler" sürekli olarak değişiyordu ve çizgi parçaları gibi varlıklar için kullanılabilirken, "sayılar" ayrık idi. Dolayısıyla irrasyoneller yalnızca geometrik olarak ele alınabilirdi ve gerçekten de Yunan matematiği esas olarak geometrikti. Ebu Kamil Şüca bin Aslam ve Abdülkāhir el-Bağdâdî gibi İslami matematikçiler, büyüklük ve sayı arasındaki ayrımı yavaşça ortadan kaldırarak irrasyonel büyüklüklerin denklemlerde katsayılar olarak görünmesine ve cebirsel denklemlerin çözümleri olmasına izin verdi.[11][12] Matematiksel nesneler olarak irrasyonellerle özgürce çalıştılar, ancak doğalarını yakından incelemediler.[13]

12. yüzyılda, Harizmi'nin Hint rakamları üzerindeki Aritmetiğinin (Şablon:Dil, Hindu Hesaplamalarının İlkeleri adlı eseri) Latince tercümeleri, ondalık konumsal sayı sistemini Batı dünyasına tanıttı.[14] Cebir ve Denklem Hesabı Üzerine Özet Kitap (Şablon:Dil, Şablon:Dil) adlı eseri, doğrusal ve ikinci dereceden denklemlerin ilk sistematik çözümlerini sundu. Rönesans Avrupa'sında, çalışmalarının eski Hint veya Yunan kaynaklarına dayandığı artık bilinmesine rağmen, cebrin orijinal mucidi olarak kabul edildi.[15] Batlamyus'un Coğrafya (Şablon:Dil) 'sını gözden geçirdi ve astronomi ile astroloji üzerine yazdı. Ancak, C.A. Nallino, Hârizmi'nin orijinal çalışmasının Batlamyus'a değil, muhtemelen Süryanice veya Arapça bir kaynaktan türetilmiş bir dünya haritasınaŞablon:Sfnp dayandığını öne sürer.

Küresel trigonometri

Şablon:Daha fazla

Küresel sinüs yasası, 10. yüzyılda keşfedildi: çeşitli şekillerde Hucendî, Nasîrüddin Tûsî ve Ebu Nasr Mansur'a, katkıda bulunan kişi olarak Ebu'l-Vefâ el-Bûzcânî'ye atfedildi.[11] İbn Mu'az el-Ceyyani'nin 11. yüzyılda bir kürenin bilinmeyen yayları kitabında genel sinüs yasasını tanıttı.[16] Sinüslerin düzlem yasası 13. yüzyılda Nasîrüddin Tûsî tarafından tanımlanmıştır. On the Sector Figure adlı eserinde düzlem ve küresel üçgenler için sinüs yasasını belirtmiş ve bu yasaya kanıtlar sağlamıştır.[17]

Negatif sayılar

Şablon:Further

9. yüzyılda İslami matematikçiler Hint matematikçilerin çalışmalarındaki negatif sayılara aşinaydı, ancak bu dönemde negatif sayıların tanınması ve kullanılması konusunda çekingen kalındı.[18] Hârizmi, negatif sayılar veya negatif katsayılar kullanmadı.[18] Ancak elli yıl içinde Ebu Kamil Şuca, (a±b)(c±d) çarpımını genişletmek için işaretlerin kurallarını açıkladı.[19] El-Kerecî, al-Fakhrī adlı kitabında "negatif miktarların terim olarak sayılması gerektiğini" yazdı.[18] 10. yüzyılda Ebu'l-Vefâ el-Bûzcânî, Aritmetik Biliminden Yazanlar ve İşadamları İçin Gerekli Olanlar Üzerine Bir Kitap (Şablon:Dil) 'ta borçları negatif sayılar olarak kabul etti.[19]

12. yüzyılda, El-Kerecî'nin halefleri işaretlerin genel kurallarını belirtecek ve bunları, polinom bölünmelerini çözmek için kullanacaklardı.[18] Semev'el el-Mağribî'nin yazdığı gibi:

Şablon:Alıntı

Çift yanlış yöntemi

Şablon:Daha fazla

9. ve 10. yüzyıllar arasında Mısırlı matematikçi Ebu Kamil Şuca, İki Hatanın Kitabı (Şablon:Dil) olarak bilinen çift yanlış yönteminin kullanımı üzerine şimdi kaybolmuş olan bir inceleme yazdı. Orta Doğu'dan çift yanlış yöntemi üzerine günümüze ulaşan en eski yazı, Lübnan'ın Baalbek şehrinden bir Arap matematikçi olan Kusta bin Luka'ya (10. yüzyıl) aittir. Tekniği, Öklidci tarzda muntazam bir geometrik ispat yöntemiyle doğruladı. Orta Çağ Müslüman matematiği geleneğinde, çift yanlış yöntemi, hesab'ül haṭaʾeyn ("iki hatayla hesaplaşma", "reckoning by two errors") olarak biliniyordu. Yüzyıllar boyunca ticari ve hukuki sorunlar (Kuran'daki miras kurallarına göre mülk paylaşımı) ve tamamen eğlence problemleri gibi pratik problemleri çözmek için kullanıldı. Algoritma genellikle, Fas kökenli matematikçiler olan İbn Haccâc el-İşbîlî'ye atfedilen bir dize ve Ebû Bekir bin Ayyâş ile İbnü’l-Bennâ el-Merrâküşî tarafından açıklanan denge-ölçekli diyagramlar gibi anımsatıcılar yardımıyla ezberlendi.[20]

Şablon:Çengel

Diğer önemli şahıslar

Galeri

Şablon:Galeri

Notlar

Şablon:Kaynakça

Dipnotlar

  1. "Ömer Hayyam, 'Çadırcı' (yaklaşık 1050–1123), üçüncü dereceden denklemleri içerecek şekilde Harizmi'nin ötesine geçen bir "Cebir" yazdı. Selefleri gibi Ömer Hayyam, ikinci dereceden denklemler için hem aritmetik hem de geometrik çözümler sağladı; genel kübik denklemler için (yanlışlıkla, on altıncı yüzyılın daha sonra gösterdiği gibi) aritmetik çözümlerin imkansız olduğuna inandı; bu nedenle yalnızca geometrik çözümler verdi. Kübikleri çözmek için kesişen koniklerin kullanılması yöntemi, daha önce Menaechmus, Arşimet ve İbn-i Heysem tarafından kullanılmıştı, ancak Ömer Hayyam, (pozitif kökleri olan) üçüncü derece denklemleri kapsayacak şekilde genelleştirme yönteminde övgüye değer bir adım attı. [...] Üçten daha yüksek dereceli denklemler için, Ömer Hayyam görünüşe göre benzer geometrik yöntemler öngörmedi, çünkü uzay üç boyuttan fazlasını içermiyordu, [...]"Şablon:Sfn

Kaynakça

Şablon:Kaynak başı

Şablon:Kaynak sonu

Konuyla ilgili yayınlar

Şablon:Kaynak başı

İslam matematiği üzerine kitaplar
İslam matematiği üzerine kitap bölümleri
İslam bilimi üzerine kitaplar
Matematik tarihi üzerine kitaplar
İslam matematiği üzerine dergi makaleleri
Bibliyografyalar ve biyografiler
Televizyon belgeselleri

Şablon:Kaynak sonu

Dış bağlantılar

Şablon:Otorite kontrolü Şablon:Matematik tarihi Şablon:İslam matematikçileri Şablon:Yunan matematiği

  1. Katz (1993): "Orta Çağ İslamının tam bir matematik tarihi henüz yazılamaz, çünkü bu Arapça el yazmalarının pek çoğu incelenmemiş durumda ... Yine de, genel taslak ... biliniyor. Özellikle, İslami matematikçiler, ondalık kesirleri içerecek şekilde ondalık basamak-değer sayı sistemini tamamen geliştirdiler, cebir çalışmalarını sistematik hale getirdiler ve cebir ve geometri arasındaki ilişkiyi düşünmeye başladılar, Öklid, Arşimet ve Apollonius'un başlıca Yunan geometrik incelemeleri üzerinde çalıştılar, ilerlemeler kaydettiler ve düzlem ve küresel geometride önemli gelişmeler sağladılar." Smith (1958) Cilt. 1, Bölüm VII.4: "Genel olarak Arap matematiğinin Altın Çağı'nın büyük ölçüde 9. ve 10. yüzyıllarla sınırlı olduğu söylenebilir; Yunan matematiğinin klasiklerini korumak ve gelecek nesillere aktarmak için dünyanın Arap bilim adamlarına büyük bir borcu olduğunu ve cebirde hatırı sayılır bir özgünlük geliştirmelerine ve trigonometri çalışmalarında biraz deha göstermelerine rağmen, çalışmalarının esas olarak aktarım işi olduğunu söylemek mümkündür."
  2. Adolph P. Yushkevich Şablon:Kaynak "İslâm matematikçileri, Avrupa'da bilimin gelişmesi üzerinde, Yunanlar, Hintler, Suriyeliler, Babilliler vb. tarafından miras aldıkları kadar, kendi keşifleriyle de zenginleştirerek verimli bir etki yaptılar."
  3. Şablon:Web kaynağı
  4. Şablon:Web kaynağı
  5. Şablon:Kitap kaynağı
  6. Şablon:Kitap kaynağı
  7. 7,0 7,1 Şablon:Kitap kaynağı
  8. Şablon:MacTutor Biography
  9. Şablon:MacTutor Biography
  10. Şablon:Akademik dergi kaynağı
  11. 11,0 11,1 Şablon:Kitap kaynağı
  12. Şablon:MacTutor Biography
  13. Şablon:Web kaynağı
  14. Şablon:Harvnb
  15. Şablon:Harvnb; Şablon:Harvnb
  16. Şablon:MacTutor Biography
  17. Şablon:Kitap kaynağı
  18. 18,0 18,1 18,2 18,3 Şablon:Kitap kaynağı
  19. 19,0 19,1 Şablon:Kaynak
  20. Şablon:Konferans kaynağı Available online at: Şablon:Web kaynağı and Şablon:Web kaynağı