Holditch teoremi

testwiki sitesinden
17.34, 15 Aralık 2024 tarihinde imported>İmmortalance tarafından oluşturulmuş 2528 numaralı sürüm (Kaynakça: yazım, imla ve diğer küçük düzenlemeler, yazış şekli: e : ç → e: ç)
(fark) ← Önceki sürüm | Güncel sürüm (fark) | Sonraki sürüm → (fark)
Gezinti kısmına atla Arama kısmına atla

Düzlem geometride, Holditch teoremi, sabit uzunlukta bir kirişin dışbükey kapalı bir eğri içinde dönmesine izin verilirse, kiriş üzerindeki bir noktanın yerinin bir uçtan p uzaklığı ve diğerinden q uzaklığı kapalı alanı orijinal eğrinin oluşturduğu alandan πpq daha az olan kapalı bir eğri olduğunu belirtir. Teorem 1858'de İngiliz matematikçi Rev. Hamnet Holditch tarafından yayımlanmıştır.[1][2] Holditch tarafından bahsedilmese de, teoremin kanıtı, kirişin, izlenen noktanın yerinin basit bir kapalı eğri olacak kadar kısa olduğu varsayımını gerektirir.[3]

Gözlemler

Teorem, Clifford A. Pickover'ın matematik tarihinde 250 kilometre taşından biri olarak dahil edilmiştir.[1] Teoremin bazı özellikleri arasında, πpq alan formülünün orijinal eğrinin hem şeklinden hem de boyutundan bağımsız olması ve alan formülünün, yarı eksenli p ve q olan bir elipsin alanıyla aynı olması yer alır. Teoremin yazarı Cambridge, Caius College'ın bir başkanıydı.

Genişlemeler

Broman,[3] bir genelleme ile birlikte teoremin daha kesin bir açıklamasını verir. Genelleme, örneğin, dış eğrinin bir üçgen olduğu durumun dikkate alınmasına izin verir, böylece Holditch teoreminin kesin ifadesinin koşulları geçerli olmaz, çünkü kirişin uç noktalarının yolları, dar bir açı geçildiğinde retrograd kısımlara sahiptir (kendilerini geri izleyen kısımlar). Bununla birlikte, genelleme, kiriş üçgenin yüksekliklerinden herhangi birinden daha kısaysa ve izlenen yer, basit bir eğri olacak kadar kısaysa, aradaki alan için Holditch formülünün hala doğru olduğunu (ve üçgen yeterince kısa bir kirişi olan herhangi bir dışbükey çokgen ile değiştirilir). Ancak diğer durumlar farklı formüllerle sonuçlanır.

Notlar

Şablon:Kaynakça

Kaynakça

Dış bağlantılar

Konuyla ilgili yayınlar

  • H. Bayam Karadağ & Sadık Keleş, (1996), Parallel Projection Area and Holditch's Theorem, Commun. Fac. Sci. Univ. Ank. Series A1, Vol.45, ss. 75-84, Makale
  • Mark J. Cooker, (1998), An extension of Holditch’s theorem on the area within a closed curve, The Mathematical Gazette, Volume 82, Issue 494, July 1998, ss. 183-188, https://doi.org/10.2307/3620400
  • Gülay Koru Yücekaya, H. Hilmi Hacısalihoğlu, (2009), Holditch’s Theorem for Circles in 2-Dimensional Euclidean Space, DPÜ Fen Bilimleri Dergisi, Sayı 18, Nisan 2009, ISSN:1302-3055, ss.39-44, Makale
  • Monterde, J., Rochera, D., (2019), Holditch’s Theorem in 3D Space. Results Math 74, 110 (2019). https://doi.org/10.1007/s00025-019-1035-6, Makale
  • Cieślak, W., Martini, H. & Mozgawa, W., (2020), On Holditch’s theorem. J. Geom. 111, 24 (2020). https://doi.org/10.1007/s00022-020-00536-5