Manyetik Reynolds sayısı

testwiki sitesinden
20.52, 25 Eylül 2024 tarihinde imported>Battall tarafından oluşturulmuş 3067 numaralı sürüm (İlgili sayfaya şablon eklendi.)
(fark) ← Önceki sürüm | Güncel sürüm (fark) | Sonraki sürüm → (fark)
Gezinti kısmına atla Arama kısmına atla

Manyetik hidrodinamikte, manyetik Reynolds sayısı (Rm) bir boyutsuz nicelik olup, bir iletken ortamın hareketiyle bir manyetik alanın adveksiyon veya indüksiyonunun, manyetik difüzyona göreceli etkilerini tahmin eder. Bu sayı, akışkanlar mekaniğindeki Reynolds sayısının manyetik bir benzeridir ve genellikle şu şekilde tanımlanır:

Rm=ULηinductiondiffusion

burada

  • U akışın tipik bir hız ölçeğidir,
  • L akışın tipik bir uzunluk ölçeğidir,
  • η manyetik difüzyondur.

İletken bir akışkanın hareketiyle manyetik alanın üretilme mekanizması dinamo teorisinin konusudur. Ancak, manyetik Reynolds sayısı çok büyük olduğunda, difüzyon ve dinamo daha az önem kazanır ve bu durumda odak, genellikle manyetik alanın akış üzerindeki etkisine kayar.

Türetme

Manyetik hidrodinamik teorisinde, manyetik Reynolds sayısı indüksiyon denkleminden türetilebilir:

𝐁t=×(𝐮×𝐁)+η2𝐁

burada

Sağdaki ilk terim, plazmadaki elektromanyetik indüksiyon etkilerini ve ikinci terim manyetik difüzyon etkilerini hesaplar. Bu iki terimin göreceli önemi, oranlarını alarak bulunabilir; bu oran manyetik Reynolds sayısı Rm'dir. Her iki terimin de 1/L olacak şekilde bir ölçek uzunluğunu L ve 𝐮U olacak şekilde bir ölçek hızını U paylaştığı varsayılırsa, indüksiyon terimi şu şekilde yazılabilir:

×(𝐮×𝐁)UBL

ve difüzyon terimi şu şekilde yazılabilir:

η2𝐁ηBL2.

Bu iki terimin oranı dolayısıyla

Rm=ULη.

Büyük ve küçük Rm için genel özellikler

Rm1 olduğunda, adveksiyon nispeten önemsizdir ve bu durumda manyetik alan, akıştan ziyade sınır koşulları tarafından belirlenen saf bir difüzyon durumuna doğru eğilim gösterir.

Rm1 olduğunda, uzunluk ölçeği L üzerinde difüzyon nispeten önemsizdir. Manyetik alanın akı çizgileri, adveksiyonun dengeleyebileceği kadar kısa bir uzunluk ölçeğinde gradyanlar yoğunlaşana kadar akışkan akışı ile birlikte taşınır.

Değer aralığı

Dünya için Rm değerinin yaklaşık 103 mertebesinde olduğu tahmin edilmektedir.[1] Disipasyon önemlidir, ancak sıvı demir dış çekirdekteki hareket manyetik bir alanı destekler. Güneş sisteminde çalışan diğer dinamo mekanizmaları olan gök cisimleri de vardır, örneğin Jüpiter, Satürn ve Merkür; ve çalışmayanlar, örneğin Mars, Venüs ve Ay.

İnsan ölçeği çok küçüktür, bu nedenle genellikle Rm1. Bir iletken sıvının hareketiyle manyetik alan üretimi, yalnızca cıva veya sıvı sodyum kullanılarak yapılan birkaç büyük deneyde gerçekleştirilmiştir.[2][3][4]

Sınırlar

Kalıcı manyetizasyonun mümkün olmadığı durumlarda, örneğin Curie sıcaklığının üzerinde, bir manyetik alanı korumak için Rm'nin yeterince büyük olması gerekir ki indüksiyon difüzyonu aşabilsin. İndüksiyon için önemli olan hızın mutlak büyüklüğü değil, akıştaki göreceli farklılıklar ve kaymalardır, bu farklılıklar manyetik alan çizgilerini uzatır ve büker.[5] Bu durumda manyetik Reynolds sayısının daha uygun bir formu aşağıdaki gibi olur:

R^m=L2Sη

burada S, gerinimin bir ölçüsüdür. En bilinen sonuçlardan biri Backus'a aittir,[6] ve bir küredeki akışla manyetik alan oluşturmanın minimum Rm değerinin şu şekilde olduğunu belirtir:

R^mπ2

burada L=a kürenin yarıçapıdır ve S=emax maksimum gerinim hızıdır. Bu sınır, Proctor tarafından yaklaşık %25 oranında iyileştirilmiştir.[7]

Bir akış tarafından manyetik alan oluşturulmasına ilişkin birçok çalışma, hesaplama açısından uygun olan periyodik küpü dikkate alır. Bu durumda minimum değer şu şekilde bulunmuştur:[8]

R^m=2.48

burada S uzunlukları 2π olan ölçeklendirilmiş bir alandaki kök-ortalama-kare gerinimidir. Küpte küçük uzunluk ölçeklerinde kayma dışlanırsa, minimum Rm=1.73 olur, burada U kök-ortalama-kare değerdir.

Reynolds sayısı ve Peclet sayısı ile ilişkisi

Manyetik Reynolds sayısı, hem Peclet sayısı hem de Reynolds sayısı ile benzer bir formdadır. Üçü de belirli bir fiziksel alan için advektif ve difüzyon etkilerinin oranını verir ve hız ile uzunluğun bir difüzyon katsayısına bölünmesi şeklindedir. Manyetik Reynolds sayısı, manyetohidrodinamik akıştaki manyetik alanla ilgiliyken, Reynolds sayısı akışkanın hızıyla ve Peclet sayısı ise ısı ile ilişkilidir. Bu boyutsuz gruplar, ilgili yönlendirici denklemlerin boyutsuzlaştırılmasından ortaya çıkar: indüksiyon denklemi, Navier–Stokes denklemleri ve ısı denklemi.

Girdap akımı freni ile ilişkisi

Boyutsuz manyetik Reynolds sayısı, Rm, fiziksel bir akışkanın yer almadığı durumlarda da kullanılır.

Rm=μσ × (karakteristik uzunluk) × (karakteristik hız)
μ manyetik geçirgenlik
σ elektriksel iletkenliktir.

Rm<1 olduğunda yüzey katmanı etkisi ihmal edilebilir ve girdap akımı freni torku, bir indüksiyon motorunun teorik eğrisini takip eder.

Rm>30 olduğunda yüzey katmanı etkisi baskın hale gelir ve fren torku, hız arttıkça indüksiyon motoru modelinin öngördüğünden çok daha yavaş azalır.[9]

Ayrıca bakınız

Kaynakça

Şablon:Kaynakça

Diğer okumalar

Şablon:Akışkanlar mekaniğindeki boyutsuz sayılar