Ursell sayısı

testwiki sitesinden
20.35, 20 Şubat 2025 tarihinde imported>İmmortalance tarafından oluşturulmuş 3097 numaralı sürüm (top: noktalama hatası, değiştirildi: , ve → ve)
(fark) ← Önceki sürüm | Güncel sürüm (fark) | Sonraki sürüm → (fark)
Gezinti kısmına atla Arama kısmına atla
Dalga özellikleri

Akışkanlar dinamiğinde, Ursell sayısı, bir akışkan tabakasındaki yüzeysel ağırlık dalgalarının (İng. surface gravity waves) nonlineerlik derecesini belirten bir boyutsuz parametredir. Bu terim, 1953 yılında önemini tartışan Fritz Ursell'in adıyla anılmaktadır.[1]

Ursell sayısı, dalga boyunun su derinliğinden çok daha büyük olduğu sığ su durumunda, nonlineer periyodik dalgalar için bir Stokes dalgası genişlemesi olan bir pertürbasyon teorisi ile türetilmiştir. Ursell sayısı U şu şekilde tanımlanır:

U=Hh(λh)2=Hλ2h3,

Bu, birinci dereceden terime göre serbest yüzey yükselmesindeki ikinci dereceden terimlerin genlik oranıdır (3 / (32 π2) sabiti hariç).[2] Kullanılan parametreler:

  • H : dalga yüksekliği, yani dalga tepe ve çukur yükseklikleri arasındaki fark,
  • h : ortalama su derinliği ve
  • λ : dalga boyu, derinliğe kıyasla büyük olmalıdır, λh.

Dolayısıyla Ursell parametresi U, göreceli dalga yüksekliği H / h ile göreceli dalga boyunun λ / h karesi çarpımına eşittir.

Uzun dalgalar (λh) için Ursell sayısı küçük olduğunda, U ≪ 32 π2 / 3 ≈ 100,[3] doğrusal dalga teorisi geçerlidir. Aksi halde (ve genellikle) oldukça uzun dalgalar (λ > 7 h)[4] için nonlineer bir teori – Korteweg–de Vries denklemi veya Boussinesq denklemleri – kullanılmalıdır. Bu parametre, farklı bir normalleştirme ile, 1847 yılında yüzeysel ağırlık dalgaları (İng. surface gravity waves) üzerine yazdığı tarihî makalesinde George Gabriel Stokes tarafından tanıtılmıştır.[5]

Notlar

Şablon:Kaynakça

Kaynakça

Şablon:Akışkanlar mekaniğindeki boyutsuz sayılar

  1. Şablon:Dergi kaynağı
  2. Dingemans (1997), Part 1, §2.8.1, pp. 182–184.
  3. This factor is due to the neglected constant in the amplitude ratio of the second-order to first-order terms in the Stokes' wave expansion. See Dingemans (1997), p. 179 & 182.
  4. Dingemans (1997), Part 2, pp. 473 & 516.
  5. Şablon:Dergi kaynağı
    Reprinted in: Şablon:Kitap kaynağı