Dosya:Birthdaymatch.svg
testwiki sitesinden
Gezinti kısmına atla
Arama kısmına atla
Bu SVG dosyasının PNG önizlemesinin boyutu: 720 × 540 piksel. Diğer çözünürlükler: 320 × 240 piksel | 640 × 480 piksel | 1.024 × 768 piksel | 1.280 × 960 piksel | 2.560 × 1.920 piksel.
Orijinal dosya (SVG dosyası, sözde 720 × 540 piksel, dosya boyutu: 291 KB)
Bu dosya Wikimedia Commons deposunda bulunmaktadır ve diğer projeler tarafından kullanılıyor olabilir. Aşağıda dosya açıklama sayfasındaki açıklama gösteriliyor.
Özet
| AçıklamaBirthdaymatch.svg |
English: In probability theory, the birthday problem or birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. By the pigeonhole principle, the probability reaches 100% when the number of people reaches 367 (since there are 366 possible birthdays, including February 29). However, 99% probability is reached with just 57 people, and 50% probability with 23 people. These conclusions are based on the assumption that each day of the year (except February 29) is equally probable for a birthday.
The mathematics behind this problem led to a well-known cryptographic attack called the birthday attack, which uses this probabilistic model to reduce the complexity of cracking a hash function. |
| Tarih | |
| Kaynak | Yükleyenin kendi çalışması |
| Yazar | Guillaume Jacquenot |
| SVG gelişimi InfoField | |
| Kaynak kodu InfoField | Python code# -*- coding: utf-8 -*-
#
# Script to generate in English and French, graphs for the
# birthday problem.
# More precisely, it generates two SVG files representing the
# probability of no match of two identical birthday one the same
# wrt the number of person in the considered group.
#
# **************************************************************
# http://en.wikipedia.org/wiki/Birthday_problem
# From Wikipedia, the free encyclopedia:
# In probability theory, the birthday problem or birthday
# paradox concerns the probability that, in a set of n
# randomly chosen people, some pair of them will have the
# same birthday. By the pigeonhole principle, the probability
# reaches 100% when the number of people reaches 367
# (since there are 366 possible birthdays, including February
# 29). However, 99% probability is reached with just 57 people,
# and 50% probability with 23 people. These conclusions are
# based on the assumption that each day of the year (except
# February 29) is equally probable for a birthday.
#
# The mathematics behind this problem led to a well-known
# cryptographic attack called the birthday attack, which
# uses this probabilistic model to reduce the complexity
# of cracking a hash function.
#
# Text under the
# Creative Commons Attribution-ShareAlike License
# **************************************************************
#
# Implementation:
# To ensure numerical accuracy, one evaluates the log10 of the
# probabibity of no match. This allows to converts the
# probability formula from a product formula to a sum formula.
#
#
# Guillaume Jacquenot
# 2013/03/10
import matplotlib.pyplot as plt
from matplotlib import rc
rc('font',**{'family':'serif','serif':['Palatino'],'size':14})
rc('text', usetex=True)
import numpy as np
def BirthdaymatchComputationLog10():
'''
This function evaluates the log10 probability of no
match for the birthday paradox.
This ensures no approximation on the result.
$\log _{10} \left( {\bar p(n)} \right) =
\sum\limits_{i = 365 + 1 - n}^{365}
{\log _{10} \left( i \right)}
- n\log _{10} \left( {365} \right)$
'''
n=np.arange(1,365)
nR=np.arange(365,1,-1)
p=np.cumsum(np.log10(nR))-n*np.log10(365)
return n,p
def BirthdaymatchGenerateTitle(logTitle=False):
if logTitle:
title='$\\log _{10} \\left( {\\bar p(n)} \\right)\
= \\sum\\limits_{i = 365 + 1 - n}^{365}\
{\\log _{10} \\left( i \\right)}\
- n\\log _{10} \\left( {365} \\right)$'
else:
title='$\\bar p(n) = \\frac{365!}{365^n\
\\left( {365 - n} \\right)!}$'
return title
def Birthdaymatch(\
labels={'xlabel':'Number of people',\
'ylabel':'Probability of no match',\
'title':'Birthday paradox'},\
outputFilename = r'Birthdaymatch.svg'):
n,p = BirthdaymatchComputationLog10()
fig, ax = plt.subplots()
plt.plot(n,p,c='k', linestyle='-')
plt.grid(True, ls='-', c='#a0a0a0')
plt.xlabel(labels['xlabel'])
plt.ylabel(labels['ylabel'])
plt.title(labels['title']+' - '+BirthdaymatchGenerateTitle())
fig.canvas.draw()
labels = [item.get_text() for item in ax.get_yticklabels()]
labels = [label[1:] if label.startswith('$') else label for label in labels]
labels = [label[0:-1] if label.endswith('$') else label for label in labels]
labels = ['$10^{'+label+'}$' for label in labels]
ax.set_yticklabels(labels)
plt.savefig(outputFilename)
Birthdaymatch()
Birthdaymatch(\
labels={'xlabel':u"Nombre de personnes",\
'ylabel':u"Probabilit\\'e de non correspondance",\
'title':u"Paradoxe des anniversaires"},\
outputFilename = r'Birthdaymatch_FR.svg')
|
Lisanslama
Ben, bu işin telif sahibi, burada işi aşağıdaki lisans altında yayımlıyorum:
Bu dosya, Creative Commons Atıf-Benzer Paylaşım 3.0 Taşınmamış lisansı ile lisanslanmıştır
- Şu seçeneklerde özgürsünüz:
- paylaşım – eser paylaşımı, dağıtımı ve iletimi
- içeriği değiştirip uyarlama – eser adaptasyonu
- Aşağıdaki koşullar geçerli olacaktır:
- atıf – Esere yazar veya lisans sahibi tarafından belirtilen (ancak sizi ya da eseri kullanımınızı desteklediklerini ileri sürmeyecek bir) şekilde atıfta bulunmalısınız.
- benzer paylaşım – Maddeyi yeniden düzenler, dönüştürür veya inşa ederseniz, katkılarınızı özgünüyle aynı veya uyumlu lisans altında dağıtmanız gerekir.
Altyazılar
Bu dosyanın temsil ettiği şeyin tek satırlık açıklamasını ekleyin.
Bu dosyada gösterilen öğeler
betimlenen
10 Mart 2013
image/svg+xml
68b9c96e2a245296ec08bbfe7963536985e6cf9e
297.936 bayt
540 piksel
720 piksel
Dosya geçmişi
Dosyanın herhangi bir zamandaki hâli için ilgili tarih/saat kısmına tıklayın.
| Tarih/Saat | Küçük resim | Boyutlar | Kullanıcı | Yorum | |
|---|---|---|---|---|---|
| güncel | 20.39, 10 Mart 2013 | 720 × 540 (291 KB) | wikimediacommons>Gjacquenot | User created page with UploadWizard |
Dosya kullanımı
Aşağıdaki sayfa bu dosyayı kullanmaktadır:
"https://tr.wiki.beta.math.wmflabs.org/wiki/Dosya:Birthdaymatch.svg" sayfasından alınmıştır