Dosya:Erays.svg

testwiki sitesinden
Gezinti kısmına atla Arama kısmına atla
Orijinal dosya (SVG dosyası, sözde 1.000 × 500 piksel, dosya boyutu: 612 KB)

Bu dosya Wikimedia Commons deposunda bulunmaktadır ve diğer projeler tarafından kullanılıyor olabilir. Aşağıda dosya açıklama sayfasındaki açıklama gösteriliyor.

Özet

Açıklama
English: Polar coordinate system and mapping from the complement (exterior) of the closed unit disk to the complement of the filled Julia set for .
বাংলা: জটিল গতিবিদ্যায় একক বৃত্ত
Français : Uniformisation du complémentaire du segment .
Bahasa Indonesia: Lingkaran satuan dalam dinamika kompleks.
日本語: リーマン写像による単位円の像としての単連結ジュリア集合
Polski: Układ współrzędnych biegunowych oraz funkcja odwzorowująca dopełnienie dysku jednostkowego na dopełnienie zbioru Julia.
Tarih 4 Kasım 2008 (original upload date)
Kaynak Own work based on: Erays.png by Adam Majewski
Yazar Vektörizasyon: Alhadis
Diğer sürümler
Source code
InfoField
Created using Maxima.
R_max: 5;
R_min: 1;
dR: R_max - R_min;
psi(w) := w+1/w;
NmbrOfRays: 10;
iMax: 100; /* number of points to draw */
GiveCirclePoint(t) := R*%e^(%i*t*2*%pi); /* gives point of unit circle for angle t in turns */
GiveWRayPoint(R) := R*%e^(%i*tRay*2*%pi); /* gives point of external ray for radius R and angle tRay in turns */ 

/* f_0 plane = W-plane */
/* Unit circle */
R: 1;
circle_angles: makelist(i/(10*iMax), i, 0, 10*iMax-1); /* more angles = more points */
CirclePoints: map(GiveCirclePoint, circle_angles);

/* External circles */
circle_radii: makelist(R_min+i, i, 1, dR);
WCirclesPoints: [];
for R in circle_radii do 
	WCirclesPoints: append(WCirclesPoints, map(GiveCirclePoint, circle_angles));

/* External W rays */
ray_radii: makelist(R_min+dR*i/iMax, i, 0, iMax);
ray_angles: makelist(i/NmbrOfRays, i, 0, NmbrOfRays-1);
WRaysPoints: [];
for tRay in ray_angles do 
	WRaysPoints: append(WRaysPoints, map(GiveWRayPoint, ray_radii));


/* f_c plane = Z plane = dynamic plane */
/* external Z rays */
ZRaysPoints: map(psi, WRaysPoints);

/* Julia set points */
JuliaPoints: map(psi, CirclePoints);
Equipotentials: map(psi, WCirclesPoints);


/* Mario Rodríguez Riotorto (http://www.telefonica.net/web2/biomates/maxima/gpdraw/index.html) */
load(draw);
draw(
	file_name = "erays",
	pic_width = 1000, 
	pic_height = 500,
	terminal = 'svg,
	columns = 2,
	gr2d(
		title = " unit circle with external rays & circles ",
		point_type = filled_circle,
		points_joined = true,
		point_size = 0.34,
		color = red,
		points(map(realpart, CirclePoints),map(imagpart, CirclePoints)),
		points_joined = false,
		color = black,
		points(map(realpart, WRaysPoints), map(imagpart, WRaysPoints)),
		points(map(realpart, WCirclesPoints), map(imagpart, WCirclesPoints))
	),
	gr2d(
		title = "Image under psi(w):=w+1/w; ",
		points_joined = true,
		point_type = filled_circle,
		point_size = 0.34,
		color = blue,
		points(map(realpart, JuliaPoints),map(imagpart, JuliaPoints)),
		points_joined = false,
		color = black,
		points(map(realpart, ZRaysPoints),map(imagpart, ZRaysPoints)),
		points(map(realpart, Equipotentials),map(imagpart, Equipotentials))
	) 
);

SVG gelişimi
InfoField
 Bu SVG kaynak kodu geçerlidir.
  This vector image was created with Adobe Illustrator, and then manually edited.
This dosya is saved in human-editable plain text format. Any editing of the image or creation of any derivative work should be performed using a text editor. Please do not upload edits saved or exported with Inkscape or similar vector graphics editors, as well as with automated tools such as SVG Translate.
This file supersedes the file Erays.png. It is recommended to use this file rather than the other one.

Deutsch  English  español  فارسی  français  magyar  Bahasa Indonesia  italiano  日本語  한국어  македонски  മലയാളം  Nederlands  polski  prūsiskan  português do Brasil  русский  slovenščina  svenska  中文(简体)  中文(繁體)  +/−

minor quality

Long description

Here are two diagrams:

  • on the left is dynamical plane for
  • on the right is dynamical plane for

On left diagram one can see:

Right diagram is image of left diagram under function (the Riemann map) which maps the complement (exterior) of the closed unit disk to the complement of the filled Julia set

For :

It is:

  • a simplest case for analysis,
  • only one case when formula for computing is known (explicit Riemann mapping).

maps [1]:

Lisanslama

w:tr:Creative Commons
atıf benzer paylaşım
Bu dosya, Creative Commons Atıf-Benzer Paylaşım 3.0 Taşınmamış lisansı ile lisanslanmıştır
Şu seçeneklerde özgürsünüz:
  • paylaşım – eser paylaşımı, dağıtımı ve iletimi
  • içeriği değiştirip uyarlama – eser adaptasyonu
Aşağıdaki koşullar geçerli olacaktır:
  • atıf – Esere yazar veya lisans sahibi tarafından belirtilen (ancak sizi ya da eseri kullanımınızı desteklediklerini ileri sürmeyecek bir) şekilde atıfta bulunmalısınız.
  • benzer paylaşım – Maddeyi yeniden düzenler, dönüştürür veya inşa ederseniz, katkılarınızı özgünüyle aynı veya uyumlu lisans altında dağıtmanız gerekir.
  1. Peitgen, Heinz-Otto; Richter Peter (1986) The Beauty of Fractals, Heidelberg: Springer-Verlag ISBN: 0-387-15851-0.

Altyazılar

Bu dosyanın temsil ettiği şeyin tek satırlık açıklamasını ekleyin.

Bu dosyada gösterilen öğeler

betimlenen

4 Kasım 2008

image/svg+xml

Dosya geçmişi

Dosyanın herhangi bir zamandaki hâli için ilgili tarih/saat kısmına tıklayın.

Tarih/SaatKüçük resimBoyutlarKullanıcıYorum
güncel21.35, 16 Şubat 202321.35, 16 Şubat 2023 tarihindeki sürümün küçültülmüş hâli1.000 × 500 (612 KB)wikimediacommons>AlhadisRecreated SVG using librsvg-compatible markup.

Aşağıdaki sayfa bu dosyayı kullanmaktadır: