Fermat sayıları

testwiki sitesinden
Gezinti kısmına atla Arama kısmına atla

Şablon:Tam sayı dizisi bilgi kutusu Fermat sayıları, n sıfırdan küçük olmayan bir tam sayı olmak üzere,

Fn=22n+1

şeklinde yazılabilen sayılardır. İsimlerini, bu sayıları ilk kez incelemiş olan 17. yüzyıl matematikçisi Pierre de Fermat'dan alırlar. İlk dokuz Fermat sayısı şunlardır:

F0 = 21 + 1 = 3
F1 = 22 + 1 = 5
F2 = 24 + 1 = 17
F3 = 28 + 1 = 257
F4 = 216 + 1 = 65537
F5 = 232 + 1 = 4294967297
F6 = 264 + 1 = 18446744073709551617
F7 = 2128 + 1 = 340282366920938463463374607431768211457
F8 = 2256 + 1 = 115792089237316195423570985008687907853269984665640564039457584007913129639937.
D

Bu sayılardan ilk beşi, yani F0,...,F4 asal sayılardır ve bunlara Fermat asalı denir. Fermat 1650'de tüm Fermat sayılarının asal olduğunu ileri sürmüş,[1] fakat Leonhard Euler 1732'de F5'i iki çarpana ayırarak bu iddiayı çürütmüştür:

F5=232+1=4294967297=641×6700417.

Bugün, F5,...,F11'in asal olmadığı bilinmektedir. n büyüdükçe Fn sayısı çok büyük değerler almaya başladığından, Fermat sayılarını çarpanlarına ayırmak da zorlaşmaktadır. Nitekim n > 11 için Fermat sayıları henüz asal çarpanlarına ayrılamamıştır. Dolayısıyla, n > 4 için asal bir Fermat sayısı olup olmadığı hala açık bir sorudur.

Kaynakça

Şablon:Kaynakça

Şablon:Otorite kontrolü Şablon:Matematik-taslak