Bessel polinomları
Bessel polinomları, matematikteki ortogonal polinomların bir dizisidir. Bessel polinomlarıyla ilgili birbirinden farklı ama birbiriyle yakından ilişkili çok sayıda tanım vardır. Matematikçiler tarafından tercih edilen tanım şu seriyle verilmektedir:[1] Şablon:Rp
Elektrik mühendisleri tarafından tercih edilen başka bir tanım bazen ters Bessel polinomları olarak bilinir.[2]Şablon:Rp [3]Şablon:Rp
İkinci tanımın katsayıları birinciyle aynıdır ancak ters sıradadır. Örneğin üçüncü derece Bessel polinomu;
üçüncü derece ters Bessel polinomu ise;
Bessel elektronik filtrelerinin tasarımında ters Bessel polinomu kullanılmaktadır.
Polinomların özellikleri
Bessel fonksiyonları açısından tanım
Bessel polinomu, polinomun adını aldığı Bessel fonksiyonları kullanılarak da tanımlanabilir.
burada Kn (x) ikinci türden değiştirilmiş bir Bessel fonksiyonudur, yn(x) sıradan bir polinomdur ve θn (x) ters polinomdur.[2]Şablon:RpÖrneğin:[4]
Hipergeometrik fonksiyon olarak tanım
Bessel polinomu aynı zamanda birleşik hipergeometrik fonksiyon olarak da tanımlanabilir.[5] Şablon:Rp
Benzer bir ifade genelleştirilmiş Bessel polinomları için de geçerlidir (aşağıya bakınız):[2]Şablon:Rp
Ters Bessel polinomu genelleştirilmiş bir Laguerre polinomu olarak tanımlanabilir:
buradan hipergeometrik bir fonksiyon olarak da tanımlanabileceği sonucu çıkar:
burada (− 2n)n Pochhammer sembolüdür (yükselen faktöriyel).
Oluşturma işlevi
İndeks kaydırılmış Bessel polinomları üretme işlevine sahiptir;
Göre farklılaşan , iptal etme , polinomlar için üretme fonksiyonunu verir .
Benzer üretme fonksiyonu ve (𝑦𝑛 polinomlar da) aşağıdakiler için de mevcuttur:
Ayarlamanın ardından üstel fonksiyon için aşağıdaki gösterime sahiptir:[1]Şablon:Rp
Özyineleme
Bessel polinomu aynı zamanda bir yineleme formülüyle de tanımlanabilir:
ve
Diferansiyel denklem
Bessel polinomu aşağıdaki diferansiyel denkleme uyar:
ve
Diklik
Bessel polinomları ağırlığa göre diktir karmaşık düzlemin birim çemberi üzerine entegre edilmiştir.[1]Şablon:Rp Başka bir deyişle, eğer ise;
Genelleme
Açık Form
Bessel polinomlarının literatürde aşağıdaki gibi bir genellemesi önerilmiştir:
karşılık gelen ters polinomlar
Açık katsayılar polinomlar şunlardır:[1]Şablon:Rp
Sonuç olarak, polinomlar açıkça şu şekilde yazılabilir:
Ağırlıklandırma fonksiyonu için;
ilişki için diktirler;
m ≠ n ve c için 0 noktasını çevreleyen bir eğri vardır.
α = β = 2, Bessel polinomları üzerinde özelleşir; bu durumda ρ(x) = exp(− 2 / x) olur.
Bessel polinomları için Rodrigues formülü
Yukarıdaki diferansiyel denklemin özel çözümleri olarak Bessel polinomları için Rodrigues formülü şu şekildedir :
bu durumda a Şablon:Su normalleştirme katsayılarıdır.
İlişkili Bessel polinomları
Bu genellemeye göre ilişkili Bessel polinomları için aşağıdaki genelleştirilmiş diferansiyel denkleme sahibiz:
Böylece . Çözümler şunlardır:
Sıfırlar
Eğer biri sıfırları gösteriyorsa gibi ve ile , bu durumda aşağıdaki tahminler mevcuttur:[2]Şablon:Rp
ve
hepsi için . Üstelik bu sıfırların hepsinin negatif reel kısmı vardır.
Polinomların sıfırlarının tahminleriyle ilgili daha güçlü teoremlere (daha somut olarak Saff ve Varga'nın Parabol Teoremi veya diferansiyel denklem teknikleri) başvurulursa daha keskin sonuçlar söylenebilir.[2]Şablon:Rp[6] Sonuçlardan biri şudur:[7]
Özel değerler
Bessel polinomları kadar olduğuna göre;[8]
Hiçbir Bessel polinomu, rasyonel katsayılara sahip daha düşük dereceli polinomlara dahil edilemez.[9] Ters Bessel polinomları, katsayıların ters çevrilmesiyle elde edilir. Eşdeğer olarak, 'dir. Bunun sonucunda aşağıdakiler ortaya çıkmaktadır: