Bochner özdeşliği

testwiki sitesinden
Gezinti kısmına atla Arama kısmına atla

Matematikte, özellikle diferansiyel geometride, Bochner özdeşliği, Riemannian manifoldları arasındaki harmonik gönderimlerle ilgili bir özdeşliktir. Özdeşlik, Amerikalı matematikçi Salomon Bochner'ın adını taşımaktadır.

İfadesi

M ve N, Riemann manifoldu ve u:MN harmonik bir gönderim olsun.
du, u'nun dış türevi, gradyan, Laplace–Beltrami operatorü, RiemN N üzerinde Riemann eğrilik tensörü ve RicM ise M üzerinde Ricci eğrilik tensörü ise

12Δ(|u|2)=|(du)|2+RicMu,uRiemN(u)(u,u)u,u

olur.

Ayrıca bakınız

Dış bağlantılar