Kenarortay

testwiki sitesinden
Gezinti kısmına atla Arama kısmına atla

Şablon:Kaynaksız

Kenarortaylar ve ağırlık merkezi

Kenarortay üçgende bir kenarın orta noktasını karşı köşeye birleştiren doğru parçası. Kenarortayların kesiştiği noktaya o üçgenin ağırlık merkezi denir ve G harfi ile adlandırılır.

Bir üçgende ağırlık merkezi kenarortayı ikiye bir oranında böler. Yani bir üçgende köşeye A, kenarortayın kenarı kestiği noktaya D dersek;
|AG|=2|GD|

Şablon:Geometri

Kenarortay formülleri

Kenarortay uzunluğu

Bir üçgende kenarortayın uzunluğunu bulmak için;

2Va2=b2+c2a22 bağıntısı kullanılır.

Eğer tüm kenarortaylar için bu eşitlik yazılır ve taraf tarafa toplanırsa şu eşitlik elde edilir:

4(Va2+Vb2+Vc2)=3(a2+b2+c2)

İspatı

Kenarortayın kenarı kestiği noktada bir açıya x, diğer açıya 180-x yazılırsa ve iki defa kosinüs teoremi uygulanıp taraf tarafa toplanırsa kenarortay teoremi elde edilir.

Dik üçgende kenarortay

Muhteşem üçlü

Bir dik üçgende A noktasından hipotenüse ait çizilen kenarortay doğru parçası hipotenüsün yarısına eşittir (Muhteşem üçlü):

|MA|=|BC|2

Bir dik üçgende dik kenarlara ait kenarortaylarının karelerinin toplamı hipotenüse ait kenarortayın karesinin beş katıdır:

Vb2+Vc2=5Va2=54a2

İspatı

Şu bağıntıyı yukarıda görmüştük:

4(Va2+Vb2+Vc2)=3(a2+b2+c2)

Hipotenüs c kabul edilirse Pisagor teoremi gereği a2+b2 yerine c2 yazılır. Muhteşem üçlüye göre c yerine 2Vc yazılıp düzenlenirse eşitlik elde edilir.

Dik kesişen kenarortaylar

Eğer bir üçgende herhangi iki kenarortay dik olarak kesişiyorsa bu bağıntılar ortaya çıkar:

Vb ve Vc dik kesişen kenarortaylar olmak üzere;
Vb2+Vc2=Va2

Kenarortayın izdüşüm uzunluğu

Bir kenar üzerindeki yükseklik ile kenarortayı birleştiren doğru parçası kenarortayın izdüşümüdür ve uzunluğu(x) şu formülle hesaplanır:

2ax=|b2c2|

Ayrıca bakınız

Şablon:Üçgen