Riemann integrali

testwiki sitesinden
Gezinti kısmına atla Arama kısmına atla
Bir eğri altında kalan alan cinsinden integral

Matematiğin gerçel çözümleme olarak bilinen alanında Riemann integrali bir aralıkta tanımlı fonksiyonların integralini hesaplamaya yönelik ilk kesin tanımdır. Adını Bernhard Riemann'dan alan kavram her ne kadar kuramsal amaçlar için kullanışlı değilse de çok kolay bir biçimde tanımlanabilmektedir.

Genel bakış

f, [a,b] aralığında bir gerçel değerli fonksiyon ve S={(x,y)|0<y<f(x)}, f fonksiyonun [a,b] aralığının altında ve üstünde kalan bölgenin alanı olmak üzere

abf(x)dx

ifadesi taralı alanı tanımlamak için kullanılır.

Riemann integrali S'yi hesaplarken çok basit yaklaştırmaları göz önüne almaktadır. Bu yaklaştırmalar geliştirilerek "limitte" eğrinin altında kalan S alanı tam olarak hesaplanabilmektedir.

f pozitif ve negatif değerler alabilmesine karşın integral, f'nin altında kalan alanı belirtmektedir. Bu alan, x-ekseni üstündeki alanla x-ekseni altında kalan alanın farkına eşittir.

Riemann integrali

Riemann integrali, işlevi oluşturan parçalar giderek daraldığından Riemann toplamlarının limitine eşittir. Bu limit tanımlıysa işlev integrali alınabilirdir.

Şablon:Başlık genişlet

Ayrıca bakınız

Kaynakça

  • Shilov, G. E. & Gurevich, B. L., 1978. Integral, Measure, and Derivative: A Unified Approach, Richard A. Silverman, Dover Publications. ISBN 0-486-63519-8

Şablon:Bernhard Riemann Şablon:İntegraller Şablon:Otorite kontrolü Şablon:Matematik-taslak