Sanal yerdeğiştirme

testwiki sitesinden
Gezinti kısmına atla Arama kısmına atla

Şablon:Öksüz Şablon:Kaynaksız

Bir sanal yerdeğiştirme δ𝐫i zaman sabit tutulduğunda sistemin koordinatlarında meydana gelen sonsuz küçük değişimdir. Gerçekte tüm yer değiştirmeler zamana bağlı olduğundan, bu değişime "gerçek" yerine "sanal" denilmiştir. Zamana,t ve diğer değişkenlere, {q1,q2,...,qm}, bağlı olan sistem konum vektörlerinin herhangi bir kümesinin tam türevi, aşağıdaki gibi ifade edilebilir:

d𝐫i=𝐫itdt+j=1m𝐫iqjdqj

Sanal yerdeğiştirmeyi (sanal diferansiyel yerdeğiştirme) ise aşağıdaki gibi ifade ederiz:

δ𝐫i=j=1m𝐫iqjδqj

Bu denklem Lagrange mekaniğindeki sanal iş kavramında, genelleştirilmiş koordinatlar (qj) ile genelleştirilmiş kuvvetleri (Qj) ilişkilendirmek için kullanılır.

Analitik mekanikte sanal iş kavramı ile ilişkili olan sanal yer değiştirme kavramı, sadece hareketinde bağ koşulları bulunan bir fiziksel sistemi tartışırken anlam kazanır. Sonsuz küçük yerdeğiştirmenin (genellikle d𝐫 şeklinde ifade edilir) bir özel hali olan sanal yerdeğiştirme (δ𝐫 şeklinde ifade edilir), bağ koşullarını sağlayacak şekilde sistemin konum koordinatlarındaki sonsuz küçük bir yerdeğiştirmeye karşılık gelir.

Örneğin bir boncuğun hareketi, onun bir halka üzerinde döneceği şekilde kısıtlanmışsa, boncuğun konumu onun bulunduğu açıyı veren θ koordinatı ile gösterilebilir. Diyelim ki boncuk halkanın üst kısmında bulunuyor. Boncuğu bulunduğu yükseklik olan z 'den z+dz yüksekliğine çıkarmak mümkün olan sonsuz küçük yerdeğiştirmelerden biridir. Ancak bu yerdeğiştirme bağ koşuluna uygun değildir. Tek mümkün sanal yerdeğiştirme boncuğun konumunu bir θ konumundan, yeni bir θ+δθ konumuna taşımak olurdu (δθ pozitif veya negatif olabilir).

Dikkat edilmesi gereken bir husus ta sanal yerdeğiştirmelerin yalnızca uzaysal yerdeğiştirmeler olduğudur(bu yerdeğiştirmeler meydana gelirken zaman sabittir). Zamanın ve uzayın fonksiyonu olan niceliklerin sanal diferansiyellerini hesaplarken zamana bağlılık göz önüne alınmaz (bu matematiksel olarak δt=0 ifadesine eşdeğerdir).