Spiral

testwiki sitesinden
Gezinti kısmına atla Arama kısmına atla

Şablon:Diğer anlamı2

Bir notilus kabuğunun kesitinde, logaritmik spiral şeklinde dizilmiş bölmeler

Spiral matematikte, bir merkez noktadan doğan, bu nokta etrafında dönerek kademeli olarak uzaklaşan bir eğridir.

Bir Arşimet spirali, bir sarmal ve konik spiral

İki boyutlu spiraller

İki boyutlu spiraller, r yarıçapı θ açısının tekdüze bir sürekli fonksiyonu iken; kutupsal koordinat sistemi ile açıklanabilir.

Bir daire, bu fonksiyonun monoton (tekdüze) değil sabit olduğu özel bir durumudur.

İki boyutlu spirallerin önemli türlerinden bazıları şunlardır:

Üç boyutlu spiraller

Şablon:Çoklu resim Basit 3-d spiraller için, üçüncü değişken, h (yükseklik) de θ açısının tekdüze bir sürekli fonksiyonudur. Örneğin, bir konik sarmal bir konik yüzey üzerinde, apexe mesafesi θnın üstel bir fonksiyonu olan bir spiral olarak tanımlanabilir.

Sarmal ve girdap üç boyutlu spirallerin bir çeşidi olarak görülebilir.

Ayrıca bakınız

İlişkili yayınlar

  • Cook, T., 1903. Spirals in nature and art. Nature 68 (1761), 296.
  • Cook, T., 1979. The curves of life. Dover, New York.
  • Habib, Z., Sakai, M., 2005. Spiral transition curves and their applications. Scientiae Mathematicae Japonicae 61 (2), 195 – 206.
  • Dimulyo, S., Habib, Z., Sakai, M., 2009. Fair cubic transition between two circles with one circle inside or tangent to the other. Numerical Algorithms 51, 461–476 [1] Şablon:Webarşiv.
  • Harary, G., Tal, A., 2011. The natural 3D spiral. Computer Graphics Forum 30 (2), 237 – 246 [2] Şablon:Webarşiv.
  • Xu, L., Mould, D., 2009. Magnetic curves: curvature-controlled aesthetic curves using magnetic fields. In: Deussen, O., Hall, P. (Eds.), Computational Aesthetics in Graphics, Visualization, and Imaging. The Eurographics Association [3] Şablon:Webarşiv.
  • Wang, Y., Zhao, B., Zhang, L., Xu, J., Wang, K., Wang, S., 2004. Designing fair curves using monotone curvature pieces. Computer Aided Geometric Design 21 (5), 515–527 [4] Şablon:Webarşiv.
  • A. Kurnosenko. Applying inversion to construct planar, rational spirals that satisfy two-point G2 Hermite data. Computer Aided Geometric Design, 27(3), 262–280, 2010 [5] Şablon:Webarşiv.
  • A. Kurnosenko. Two-point G2 Hermite interpolation with spirals by inversion of hyperbola. Computer Aided Geometric Design, 27(6), 474–481, 2010.
  • Miura, K.T., 2006. A general equation of aesthetic curves and its self-affinity. Computer-Aided Design and Applications 3 (1–4), 457–464 [6].
  • Miura, K., Sone, J., Yamashita, A., Kaneko, T., 2005. Derivation of a general formula of aesthetic curves. In: 8th International Conference on Humans and Computers (HC2005). Aizu-Wakamutsu, Japan, pp. 166 – 171 [7].
  • Meek, D., Walton, D., 1989. The use of Cornu spirals in drawing planar curves of controlled curvature. Journal of Computational and Applied Mathematics 25 (1), 69–78 [8] Şablon:Webarşiv.
  • Farin, G., 2006. Class A Bézier curves. Computer Aided Geometric Design 23 (7), 573–581 [9] Şablon:Webarşiv.
  • Farouki, R.T., 1997. Pythagorean-hodograph quintic transition curves of monotone curvature. Computer-Aided Design 29 (9), 601–606.
  • Yoshida, N., Saito, T., 2006. Interactive aesthetic curve segments. The Visual Computer 22 (9), 896–905 [10] Şablon:Webarşiv.
  • Yoshida, N., Saito, T., 2007. Quasi-aesthetic curves in rational cubic Bézier forms. Computer-Aided Design and Applications 4 (9–10), 477–486 [11] Şablon:Webarşiv.
  • Ziatdinov, R., Yoshida, N., Kim, T., 2012. Analytic parametric equations of log-aesthetic curves in terms of incomplete gamma functions. Computer Aided Geometric Design 29 (2), 129 – 140 [12] Şablon:Webarşiv.
  • Ziatdinov, R., Yoshida, N., Kim, T., 2012. Fitting G2 multispiral transition curve joining two straight lines, Computer-Aided Design 44(6), 591–596 [13] Şablon:Webarşiv.
  • Ziatdinov, R., 2012. Family of superspirals with completely monotonic curvature given in terms of Gauss hypergeometric function. Computer Aided Geometric Design 29(7): 510–518 [14] Şablon:Webarşiv.
  • Ziatdinov, R., Miura K.T., 2012. On the Variety of Planar Spirals and Their Applications in Computer Aided Design. European Researcher 27(8–2), 1227-–1232 [15]Şablon:Webarşiv.

Şablon:Spiraller

Şablon:Otorite kontrolü